

TIME: 3:00 PM to 6:00 PM

(Held On Saturday 06th April, 2024)

	MATHEMATICS		TEST PAPER WITH SOLUTION
	SECTION-A	2.	Let $A = \{1, 2, 3, 4, 5\}$. Let R be a relation on A
1.	Let ABC be an equilateral triangle. A new triangle is formed by joining the middle points of all sides of the triangle ABC and the same process is repeated infinitely many times. If P is the sum of perimeters and Q is be the sum of areas of all the triangles formed in this process, then:		defined by xRy if and only if $4x \le 5y$. Let m be the
			number of elements in R and n be the minimum
			number of elements from $\mathbf{A} \times \mathbf{A}$ that are required
			to be added to R to make it a symmetric relation
	(1) $P^2 = 36\sqrt{3}Q$ (2) $P^2 = 6\sqrt{3}Q$		Then $m + n$ is equal to:
	(3) $P = 36\sqrt{3}Q^2$ (4) $P^2 = 72\sqrt{3}Q$		(1) 24 (2) 23
	Ans. (1)		(3) 25 (4) 26
	\land		Ans. (3)
ol.	a a/2 a	Sol.	Given : $4x \le 5y$
	Area of first $\Delta = \frac{\sqrt{3}a^2}{4}$ Area of second $\Delta = \frac{\sqrt{3}a^2}{4} \frac{a^2}{4} = \frac{\sqrt{3}a^2}{16}$ Area of third $\Delta = \frac{\sqrt{3}a^2}{64}$		then
			$\mathbf{R} = \{(1,1), (1,2), (1,3), (1,4), (1,5), (2,2), (2,3), (2,4)\}$
			(2,5),(3,3),(3,4),(3,5),(4,4),(4,5),(5,4),(5,5)}
			i.e. 16 elements.
			i.e. $m = 16$
			Now to make R a symmetric relation add
	$\frac{64}{5}$		$\{(2,1)(3,2)(4,3)(3,1)(4,2)(5,3)(4,1)(5,2)(5,1)\}$
	sum of area = $\frac{\sqrt{3}a^2}{4} \left(1 + \frac{1}{4} + \frac{1}{16} \dots \right)$		i.e. $n = 9$
			So $m + n = 25$
	$Q = \frac{\sqrt{3}a}{4} \frac{1}{\frac{3}{4}} \frac{a^2}{\sqrt{3}}$	3.	If three letters can be posted to any one of the s
	4 perimeter of $1^{st} \Delta = 3a$		different addresses, then the probability that the
	^ 		three letters are posted to exactly two addresses is:
	perimeter of $2^{nd} \Delta = \frac{3a}{2}$		(1) $\frac{12}{25}$ (2) $\frac{18}{25}$
	perimeter of $3^{rd} \Delta = \frac{3a}{4}$ P = $3a\left(1 + \frac{1}{2} + \dots\right)$		
			(3) $\frac{4}{25}$ (4) $\frac{6}{25}$
			Ans. (1)
	P = 3a.2 = 6a	Sol.	Total method = 5^3
	$a = \frac{P}{6}$		faverable = $C_2(2^3 - 2) = 60$
	$Q = \frac{1}{\sqrt{3}} \frac{P^2}{36}$		-
	•		probability = $\frac{60}{125} = \frac{12}{25}$
	$P^2 = 36\sqrt{3}Q$		

Suppose the solution of the differential equation $\frac{dy}{dx} = \frac{(2+\alpha)x - \beta y + 2}{\beta x - 2\alpha y - (\beta \gamma - 4\alpha)}$ represents a circle passing through origin. Then the radius of this circle is : (2) $\frac{1}{2}$ (1) $\sqrt{17}$ (3) $\frac{\sqrt{17}}{2}$ (4) 2Ans. (3) $\frac{dy}{dx} = \frac{(2+\alpha)x - \beta y + 2}{\beta x - y(2\alpha + \beta) + 4\alpha}$ Sol. $\beta x dy - (2\alpha + \beta)y dy + 4\alpha dy = (2 + \alpha)x dx - \beta y dx + 2 dx$ $\beta(xdy + ydx) - (2\alpha + \beta)ydy + 4\alpha dy = (2 + \alpha)xdx + 2dx$ $\beta xy - \frac{(2\alpha + \beta)y^2}{2} + 4\alpha y = \frac{(2+\alpha)x^2}{2}$ $\Rightarrow \beta = 0$ for this to be circle $(2+\alpha)\frac{x^2}{2} + \alpha y^2 + 2x - 4\alpha y = 0$ coeff. ofx² = y² > 2 + a = 2a $\Rightarrow \boxed{\alpha = 2}$ i.e. $2x^2 + 2y^2 + 2x - 8y = 0$ $x^2 + y^2 + x - 4y = 0$ $rd = \sqrt{\frac{1}{4} + 4} = \frac{\sqrt{17}}{4}$ 5. If the locus of the point, whose distances from the point (2, 1) and (1, 3) are in the ratio 5 : 4, is $ax^{2} + by^{2} + cxy + dx + ey + 170 = 0$, then the value of $a^2 + 2b + 3c + 4d + e$ is equal to:

Ans. (3)

Sol.

let P(x, y)

$$\frac{(x-2)^2 + (y-1)^2}{(x-1) + (y-3)^2} = \frac{25}{16}$$
9x² + 9y² + 14x - 118y + 170 = 0
a² + 2b + 3c + 4d + e
= 81 + 18 + 0 + 56 - 118
= 155 - 118
= 37

6.
$$\lim_{n \to \infty} \frac{(1^{n} - 1)(n^{-} - 1) + (2^{n} - 2)(n - 2) + \dots + ((n - 1)^{2} - (n - 1))^{4}}{(1^{2} + 2^{2} + \dots + n^{3}) - (1^{2} + 2^{2} + \dots + n^{2})}$$
is equal to:
(1) $\frac{2}{3}$ (2) $\frac{1}{3}$
(3) $\frac{3}{4}$ (4) $\frac{1}{2}$
Ans. (2)
Sol.
$$\lim_{n \to \infty} \frac{\sum_{r=1}^{n-1} (r^{2} - r)(n - r)}{\sum_{r=1}^{n} r^{3} - \sum_{r=1}^{n} r^{2}}$$

$$\lim_{n \to \infty} \frac{\sum_{r=1}^{n-1} (-r - r^{2} (n + 1) - nr)}{\left(\frac{n(n+1)}{2}\right)^{2} - \frac{n(n+1)(2n+1)}{6}}$$

$$\lim_{n \to \infty} \frac{\frac{n(n-1)}{2} \left(\frac{-n(n-1)}{2} + \frac{(n+1)(n-1)n(2n-1)}{3} - \frac{n^{2}(n-1)}{2}\right)}{\frac{n(n+1)}{2} \left(\frac{n(n+1)}{2} - \frac{2n+1}{3}\right)}$$

$$\lim_{n \to \infty} \frac{\frac{n(n-1)}{2} \left(\frac{-n(n-1)}{2} + \frac{(n+1)(2n-1)}{3} - \frac{n(n+1)(2n-1)}{2} - \frac{n(n+1)(2n-1)}{2} - \frac{n(n+1)(2n-1)}{3} - \frac{n(n+1)(3n^{2} - n-2)}{\frac{n(n+1)(3n^{2} - n-2)}{3}}$$

$$\lim_{n \to \infty} \frac{(n-1)(n^{2} + 5n - 8)}{(n+1)(3n^{2} - n-2)} = \frac{1}{3}$$
7. Let $0 \le r \le n$. If $n^{n+1}C_{r+1} : n^{n}C_{r} : n^{-1}C_{r-1} = 55 : 35 : 21$, then $2n + 5r$ is equal to:
(1) 60 (2) 62
(3) 50 (4) 55
Ans. (3)
Ans. $\frac{n^{n+1}C_{r}}{nC_{r}} = \frac{55}{35}$
 $\frac{(n+1)!}{(r+1)!(n-r)!} \frac{r!(n-r)!}{n!} = \frac{11}{7}$

$$7n = 4 + 11r$$

$$\frac{{}^{n}C_{r}}{{}^{n-1}C_{r-1}} = \frac{35}{21}$$

$$\frac{n!}{r!(n-r)!} = \frac{(r-1)!(n-r)!}{(n-1)!} = \frac{5}{3}$$

$$\frac{n}{r} = \frac{5}{3}$$

$$3n = 5r$$
By solving r = 6 n = 10
$$2n + 5r = 50$$

8. A software company sets up m number of computer systems to finish an assignment in 17 days. If 4 computer systems crashed on the start of the second day, 4 more computer systems crashed on the start of the third day and so on, then it took 8 more days to finish the assignment. The value of m is equal to :

(1) 125	(2) 150
(3) 180	(4) 160

```
Ans. (2)
```

- Sol. $17m = m + (m 4) + (m 4 \times 2)... + ...(m 4 \times 24)$ 17m = 25m - 4(1 + 2...24) $8m = \frac{4 \cdot 24 \cdot 25}{2}$ 150
- 9. If z_1 , z_2 are two distinct complex number such that $\left| \frac{z_1 2z}{\frac{1}{2} z_1 \overline{z}} \right| = 2, \text{ then}$
 - (1) either z_1 lies on a circle of radius 1 or z_2 lies on a circle of radius $\frac{1}{2}$
 - (2) either z_1 lies on a circle of radius $\frac{1}{2}$ or z_2 lies on a circle of radius 1.
 - (3) z_1 lies on a circle of radius $\frac{1}{2}$ and z_2 lies on a circle of radius 1.
 - (4) both z₁ and z₂ lie on the same circle.Ans. (1)

Sol.
$$\frac{z_{1}-2z_{2}}{\frac{1}{2}-z_{1}\overline{z}_{2}} \times \frac{z_{1}-2z_{2}}{\frac{1}{2}-\overline{z}_{1}z_{2}} = 4$$

$$|z_{1}|^{2} 2z_{1}\overline{z}_{2} - 2\overline{z}_{1}z_{2} + 4|z_{2}|^{2}$$

$$= 4\left(\frac{1}{4} - \frac{\overline{z}_{1}z_{2}}{2} - \frac{z_{1}\overline{z}_{2}}{2} + |z_{1}|^{2}|z_{2}|^{2}\right)$$

$$z_{1}\overline{z}_{1} + 2z_{2} \cdot 2\overline{z}_{2} - z_{1}\overline{z}_{1}2z_{2} 2\overline{z}_{2} - 1 = 0$$

$$(z, \overline{z}_{1} - 1)(1 - 2z_{2} \cdot 2\overline{z}_{2}) = 0$$

$$(|z_{1}|^{2} - 1)(|2z_{2}|^{2} - 1) = 0$$
10. If the function $f(x) = \left(\frac{1}{x}\right)^{2x}$; $x > 0$ attains the maximum value at $x = \frac{1}{e}$ then :
(1) $e^{\pi} < \pi^{e}$
(2) $e^{2\pi} < (2\pi)^{e}$
(3) $e^{\pi} > \pi^{e}$
(4) $(2e)^{\pi} > \pi^{(2e)}$
Ans. (3)
Sol. Let $y = \left(\frac{1}{x}\right)^{2x}$

$$lny = 2x lnx$$

$$\frac{1}{y} \frac{dy}{dx} = -2(1 \quad lnx)$$
for $x > \frac{1}{e}$ f^{n} is decreasing
so, $e < \pi$

$$\left(\frac{1}{e}\right)^{2e} > \left(\frac{-\pi}{\pi}\right)^{2\pi}$$

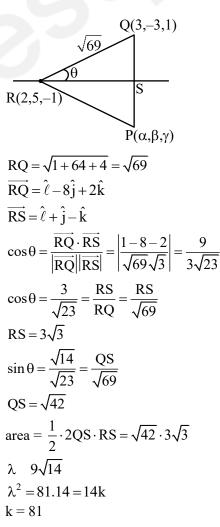
$$e^{\pi} > \pi^{e}$$
11. Let $\vec{a} = 6\hat{i} + \hat{j} - \hat{k}$ and $\vec{b} = \hat{i} + \hat{j}$. If \vec{c} is a is vector
such that $|\vec{c}| \ge 6$, $\vec{a}.\vec{c} = 6|\vec{c}|, |\vec{c} - \vec{a}| = 2\sqrt{2}$ and the

such that $|\vec{c}| \ge 6$, $\vec{a}.\vec{c} = 6|\vec{c}|$, $|\vec{c} - \vec{a}| = 2\sqrt{2}$ and the angle between $\vec{a} \times \vec{b}$ and \vec{c} is 60°, then $|(\vec{a} \times \vec{b}) \times \vec{c}|$ is equal to:

(1)
$$\frac{9}{2}(6-\sqrt{})$$
 (2) $\frac{3}{2}\sqrt{3}$
(3) $\frac{3}{2}\sqrt{6}$ (4) $\frac{9}{2}(6+\sqrt{6})$
Ans. (4)

- Sol. $|(\vec{a} \times \vec{b} \times \vec{c})| = |\vec{a} \times \vec{b}||\vec{c}| \frac{\sqrt{3}}{2}$ $|\vec{c} - \vec{a}| = 2\sqrt{2}$ $|c|^2 + |a|^2 - 2\vec{c} \cdot \vec{a} = 8$ $|z|^2 + 38 - 12|z| = 8$ $|z|^2 - 12|z| + 30 = 0$ $|z| = \frac{12 \pm \sqrt{144 - 120}}{2}$ $= \frac{12 \pm 2\sqrt{6}}{2}$ $|z| = 6 + \sqrt{6}$ $\vec{a} \times \vec{b} \quad \begin{vmatrix} \hat{\ell} & \hat{j} & \hat{k} \\ 6 & 1 & -1 \\ 1 & 1 & 0 \end{vmatrix}$ $\hat{\ell} - \hat{j} + 5\hat{k}$ $|\vec{a} \times \vec{b}| = \sqrt{27}$ $|(\vec{a} \times b) \times z| = \sqrt{27}(6 + \sqrt{6})\frac{\sqrt{3}}{2}$ $\frac{9}{2}(6 + \sqrt{-1})$
- 12. If all the words with or without meaning made using all the letters of the word "NAGPUR" are arranged as in a dictionary, then the word at 315th position in this arrangement is :
 - (1) NRAGUP
 (2) NRAGPU
 (3) NRAPGU
 (4) NRAPUG

Ans. (3) Sol. NAGPUR

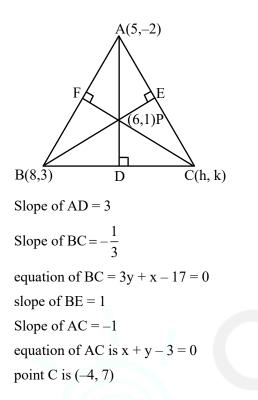

IN IOI OK	
$A \rightarrow 5! = 120$	
G ® 5! = 120	240
NA ® 4! = 24	264
NG ® 4! = 24	288
NP ® 4! = 24	312
NRAGPU = 1	313
NRAGUP	314
NRAPGU	315

Suppose for a differentiable function h, h(0) = 0, 13. h(1) = 1 and h'(0) = h'(1) = 2. If $g(x) = h(e^x) e^{h(x)}$, then g'(0) is equal to: (1)5(2) 3 (3) 8(4) 4Ans. (4) $g(x) = h(e^x) \cdot e^{h(x)}$ Sol. $g'(x) = h(e^x) \cdot e^{h(x)} \cdot h'(x) + e^{h(x)}h'(e^x) \cdot e^x$ $g'(0) = h(1)e^{h(0)}h'(0) + e^{h(0)}h'(1)$ = 2 + 2 = 414. Let P (α , β , γ) be the image of the point Q(3, -3, 1) in the line $\frac{x-0}{1} = \frac{y-3}{1} = \frac{z-1}{-1}$ and R be the point

(2, 5, -1). If the area of the triangle PQR is λ and $\lambda^2 = 14$ K, then K is equal to:

(1) 36 (2) 72 (3) 18 (4) 81 Ans. (4)

Sol.



If P(6, 1) be the orthocentre of the triangle whose 15. vertices are A(5, -2), B(8, 3) and C(h, k), then the point C lies on the circle.

> (1) $x^2 + y^2 - 65 = 0$ (2) $x^2 + y^2 - 74 = 0$ (3) $x^2 + y^2 - 61 = 0$ (4) $x^2 + y^2 - 52 = 0$ Ans. (1)

Sol.

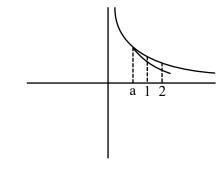
Let $f(x) = \frac{1}{7 - \sin 5x}$ be a function defined on R. 16.

Then the range of the function f(x) is equal to:

$(1) \frac{1}{8}, - \rfloor$	(2) $\left\lfloor \frac{1}{7}, - \right\rfloor$
(3) $\frac{1}{7}, - $	$(4) \left\lfloor \frac{1}{8}, - \right.$

Ans. (4)

Sol. $\sin 5x \in [-1,1]$ $-\sin 5x \in [-1, 1]$ $7 - \sin 5x \in [6, 8]$ $\frac{1}{7-\sin 5x} \in \left[\frac{1}{8}, \frac{1}{6}\right]$


Let $\vec{a} = 2\hat{i} + \hat{j} - \hat{k}$, $\vec{b} = \left(\left(\vec{a} \times \left(\hat{i} + \hat{j}\right)\right) \times \hat{i}\right) \times \hat{i}$. 17.

Then the square of the projection of \vec{a} on \vec{b} is :

(1)
$$\frac{1}{5}$$
 (2) 2
(3) $\frac{1}{3}$ (4) $\frac{2}{3}$
Ans. (2)
Sol. $\vec{a} \times (\hat{i} + \hat{j}) = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 2 & 1 & -1 \\ 1 & 1 & 0 \end{vmatrix}$
 $= \hat{i} - \hat{j} + \hat{k}$
 $(\vec{a} \times (\hat{i} \times \hat{j})) \times \hat{i} = \hat{k} + \hat{j}$
 $((\vec{a} \times (\hat{i} \times \hat{j})) \times \hat{i}) \times \hat{i} = \hat{j} - \hat{k}$
projection of \vec{a} on $\hat{b} = \frac{\vec{a} \cdot \vec{b}}{|\vec{b}|}$
 $= \frac{1+}{\sqrt{2}} - \sqrt{2}$
18. If the area of the region
 $\begin{cases} (x, y) : \frac{a}{x^2} \le y \le \frac{-}{x}, 1 \le x \le 2, 0 < a < 1 \text{ is} \\ (\log_e 2) - \frac{1}{7} \text{ then the value of } 7a - 3 \text{ is equal to:} \\ (1) 2 (2) 0 \\ (3) -1 (4) 1 \end{cases}$

Ans. (3)

Sol.

is

1	$\begin{array}{c} \text{Questpix} \qquad \qquad \text{Final JEE-I} \\ & 2(1-2) \end{array}$	20.	IfA
	area $\int_{1}^{2} \left(\frac{1}{x} - \frac{a}{x^2}\right) dx$	20.	det(A
	$\begin{bmatrix} a & a \end{bmatrix}^2$		det(a
	$\left[\ell_{nx}+\frac{a}{x}\right]_{l}^{2}$		then
	$ln2 \frac{a}{2} - a = \log_e 2 - \frac{1}{7}$		(1) 3
	2 ,		(1) 5
	$\frac{-a}{2} = -\frac{1}{7}$		Ans.
	$a = \frac{2}{7}$	Sol.	$ \mathbf{A} =$
	7a = 2	501.	
	7a - 3 = -1		adj(-
19.	If $\int \frac{1}{a^2 \sin^2 x + b^2 \cos^2 x} dx = \frac{1}{12} \tan^{-1}(3 \tan x) +$		-4a
	constant, then the maximum value of asinx + bcosx, is :		
			4^6 a
	(1) $\sqrt{40}$ (2) $\sqrt{39}$ (3) $\sqrt{42}$ (4) $\sqrt{41}$		2^{12} ·
	Ans. (1)		
Sol.	$\int \frac{\sec^2 x dx}{a^2 \tan^2 x + b^2}$		2 ¹² ·
	let $\tan x = t$		2^{12} ·
	$\sec^2 dx = dt$		2^{12} ·
	$\int \frac{dt}{a^2t^2+b^2}$		2.
	$\frac{1}{a^2}\int \frac{dt}{t^2 + \left(\frac{b}{a}\right)}$		2^{12} ·
	$\frac{a}{t^2} + \left(\frac{b}{a}\right)$		-
	$\frac{1}{a^2}\frac{1}{b}\tan^{-}\left(\frac{t}{b}a + c\right)$		2^{12} ·
	a 1 (0		$\frac{3^{20}}{2^{36}}$ =
	$\frac{1}{ab} \tan^{-} \left(\frac{\alpha}{b} \tan x \right) + c$		2^{36}
	on comparing $\frac{a}{b} = 3$		m = -
	ab = 12		m + 2
	a = 6, b = 2		
	maximum value of		

20. If A is a square matrix of order 3 suc		f order 3 such that	
	det(A) = 3 and		
	det(adj(-4 adj(-3 adj(3 a	$adj((2A)^{-1}))))) = 2^m 3^n,$	
	then m + 2n is equal to:		
	(1) 3	(2) 2	
	(3) 4	(4) 6	
	Ans. (3)		
Sol.	A = 3		
	$\left \operatorname{adj}(-4\operatorname{adj}(-3\operatorname{adj}(3\operatorname{adj}(2A)^{-}))) \right $		
	-4adj(-3adj(3adj(2A) ⁻	$) ^{2}$	
	4^{6} adj (-3adj (3adj (2A) ⁻	¹))) ²	
	$2^{12} \cdot 3^{12} 3adj(2A)^- ^8$		
	$2^{12} \cdot 3^{12} \cdot 3^{24} adj(2A)^{-} ^{8}$		
	$2^{12} \cdot 3^{36} (2A)^{-} ^{16}$		
	$2^{12} \cdot \frac{36}{ 2A ^{16}}$		
	$2^{12} \cdot \ \frac{{}^{36}}{2^{48} \left A \right ^{16}}$		
	$2^{12} \cdot \frac{{}^{36}}{2^{48} \cdot 3^{16}}$		
	$\frac{3^{20}}{2^{36}} = 2^{-36} \cdot 3^{20}$		
	m = -36 $n = 20$		
	m + 2n = 4		

SECTION-B

21. Let [t] denote the greatest integer less than or equal to t. Let f: $[0, \infty) \rightarrow R$ be a function defined by $f(x) = \left[\frac{x}{2} + 3\right] - \left[\sqrt{x}\right]$. Let S be the set of all points

> in the interval [0, 8] at which f is not continuous. Then $\sum_{n=0}^{\infty} a_n$ is equal to _____.

- **Sol.** $\left| \frac{x}{2} + 3 \right|$ is discontinuous at x = 2,4,6,8 \sqrt{x} is discontinuous at x = 1,4 F(x) is discontinuous at x = 1,2,6,8 $\sum a = 1 + 2 + 6 + 8 = 17$
- 22. The length of the latus rectum and directrices of a hyperbola with eccentricity e are 9 and $x = \pm \frac{4}{\sqrt{3}}$,

respectively. Let the line $y - \sqrt{3}x + \sqrt{3} = 0$ touch this hyperbola at (x_0, y_0) . If m is the product of the focal distances of the point (x_0, y_0) , then $4e^2 + m$ is equal to _____

NTA Ans. (61)

 $2b^2$

Ans. (Bonus)

Sol.

Given
$$\frac{2b^2}{a} = 9$$
 and $\frac{1}{e} = \pm \frac{4}{\sqrt{3}}$

equation of tangent $y - \sqrt{3}x + \sqrt{3} = 0$ by equation of tangent Let slope = S = $\sqrt{3}$ Constant = $-\sqrt{3}$ By condition of tangency

$$\Rightarrow 6 = 6a^2 - 9a$$

$$\Rightarrow$$
 a = 2, b² = 9

Equation of Hyperbola is

$$\frac{y}{2} - \frac{y}{9} =$$
 and for tangent

Point of contact is $(4, 3\sqrt{3}) = (x_0, y_0)$

Now
$$e = \sqrt{1 + \frac{9}{4}} = \frac{\sqrt{13}}{2}$$

Again product of focal distances

m =
$$(x_0e + a) (x_0e - a)$$

m + 4e² = 20e² - a²
= 20 × $\frac{13}{4}$ - 4 = 61

(There is a printing mistake in the equation of directrix $x = \pm \frac{4}{\sqrt{3}}$.

Corrected equation is $x = \pm \frac{4}{\sqrt{13}}$ for directrix, as eccentricity must be greater than one, so question

must be bonus)
23. If
$$S(x) = (1 + x) + 2(1 + x)^2 + 3(1 + x)^3 + + 60(1 + x)^{60}$$
, $x \neq 0$, and $(60)^2 \ S(60) = a(b)^b + b$,
where $a, b \in N$, then $(a + b)$ equal to _____

Ans. (3660)

Sol.

$$S(x)=(1+x) + 2(1+x)^{2} + 3(1+x)^{3} + ... + 60(1+x)^{60}$$

(1+x)S = (1+x)^{2} + 59 (1+x)^{60} + 60(1+x)^{61}
$$-xS = \frac{(1+x)(1+x)^{60} - 1}{x} - 60(1+x)^{61}$$

Put x = 60
$$-60S = \frac{61((61)^{60} - 1)}{60} - 60(61)^{61}$$

60 on solving 3660

24. Let [t] denote the largest integer less than or equal to t. If

$$\int_{0}^{3} [x^{2}] + \left\lfloor \frac{x^{2}}{2} \right\rfloor dx = a + b\sqrt{2} - \sqrt{3} - \sqrt{5} + c\sqrt{6} - \sqrt{7} ,$$

where a, b, $c \in z$, then a + b + c is equal to Ans. (23)

Sol.
$$\int_{0}^{3} \left[x^{2} \right] dx + \left[\frac{x^{2}}{2} \right] dx$$

= $\int_{0}^{1} 0 dx + \int_{1}^{12} 1 dx + \int_{\sqrt{2}}^{\sqrt{3}} 2 dx$

Questpix
 Final JEI

$$+ \int_{\sqrt{3}}^{2} 3 \, dx + \int_{2}^{\sqrt{5}} 4 \, dx + \int_{\sqrt{6}}^{\sqrt{6}} 5 \, dx$$
 $+ \int_{\sqrt{6}}^{\sqrt{7}} 6 \, dx + \int_{\sqrt{7}}^{\sqrt{8}} 7 \, dx + \int_{\sqrt{8}}^{3} 8 \, dx$
 $+ \int_{\sqrt{6}}^{\sqrt{2}} 6 \, dx + \int_{\sqrt{7}}^{\sqrt{8}} 7 \, dx + \int_{\sqrt{8}}^{3} 8 \, dx$
 $+ \int_{0}^{\sqrt{2}} 0 \, dx \quad 1 \, dx$
 $+ \int_{2}^{\sqrt{6}} 2 \, dx + \int_{\sqrt{6}}^{\sqrt{8}} 3 \, dx + \int_{\sqrt{8}}^{3} 4 \, dx = 31 - 6 \sqrt{2} - \sqrt{3} - \sqrt{5}$
 $-2\sqrt{6} - \sqrt{7}$
 $a = 31$
 $b = -6$
 $c = -2$
 $a + b + c = 31 - 6 - 2 = 23$

From a lot of 12 items containing 3 defectives, a 25. sample of 5 items is drawn at random. Let the random variable X denote the number of defective items in the sample. Let items in the sample be drawn one by one without replacement. If variance of X is $\frac{m}{n}$, where gcd(m, n) = 1, then n - m is equal to Ans. (71) **Sol.** $a = 1 \frac{{}^{3}C_{5}}{{}^{12}C_{5}}$ $b = 3.\frac{{}^{9}C_{4}}{{}^{12}C_{5}}$ $c = 3. \frac{{}^{9}C_{3}}{{}^{12}C_{5}}$ $d = 1.\frac{{}^{9}C_{2}}{{}^{12}C_{5}}$ u = 0.a + 1.b + 2.c + 3.d = 1.25 $\sigma^2 = 0.a + 1.b + 4.c + 9d - u^2$ $\sigma^2 = \frac{105}{176}$

Ans. 176 - 105 = 71

In a triangle ABC, BC = 7, AC = 8, AB = $\alpha \in N$ 26. and $\cos A = \frac{2}{3}$. If $49\cos(3C) + 42 = \frac{m}{n}$, where gcd(m, n) = 1, then m + n is equal to Ans. (39) In a triangle ABC, BC = 7, AC = 8, AB = $\alpha \in N$ 26. and $\cos A = \frac{2}{3}$. If $49\cos(3C) + 42 = \frac{m}{n}$, where gcd(m, n) = 1, then m + n is equal to Ans. (39) **Sol.** $\cos A = \frac{b^2 + c^2 - a^2}{2bc}$ $\frac{2}{3} = \frac{8^2 + c^2 - 7^2}{2 \times 8 \times c}$ C = 9 $\cos C = \frac{7^2 + 8^2 - 9^2}{2 \times 7 \times 8} = \frac{2}{7}$ $49\cos 3C + 42$ $49(4\cos^3 C - 3\cos C) + 42$ $49 \left| 4\left(\frac{2}{7}\right)^3 - 3\left(-\right)\right) + 42$ $=\frac{32}{7}$ m + n = 32 + 7 = 3927. If the shortest distance between the lines $\frac{x-\lambda}{3} = \frac{y-2}{-1}$ $\frac{z-1}{1}$ and $\frac{x+2}{-3} = \frac{y+5}{2}$ $\frac{z-4}{4}$ is $\frac{44}{\sqrt{30}}$, then the largest possible value of $|\lambda|$ is equal Ans. (43) **Sol.** $\overline{a}_1 = \lambda \hat{i} + 2\hat{j} + \hat{k}$ $\overline{a}_2 = -2\hat{i} - 5\hat{j} + 4\hat{k}$ $\vec{p} = 3\hat{i} - \hat{i} + \hat{k}$ $\vec{q} = -3\hat{i} + 2\hat{j} + 4\hat{k}$ $(\lambda+2)\hat{i}+7\hat{j}-3\hat{k}=\overline{a}_{1}-\overline{a}$ $\vec{p} \times \vec{q} = -6\hat{i} - 15\hat{i} + 3\hat{k}$

Questpix_

Final JEE-Main Exam April, 2024/06-04-2024/Evening Session

$$\frac{44}{\sqrt{30}} = \frac{\left|-6\lambda - 12 - 105 - 9\right|}{\sqrt{\left(-6\right)^2 + \left(-15\right)^2 + 3^2}}$$
$$\frac{44}{\sqrt{30}} = \frac{\left|6\lambda - 126\right|}{3\sqrt{30}}$$
$$132 = \left|6\lambda + 126\right|$$
$$\lambda = 1, \lambda = -43$$
$$\left|\lambda\right| = 43$$

28. Let
$$\alpha$$
, β be roots of $x^2 + \sqrt{2}x - 8 = 0$.

$$U_n = \alpha^n + \beta^n$$
, then $\frac{U_{10} + \sqrt{12}U_9}{2U_8}$

β

is equal to _____.

Ans. (4)

If

Sol.
$$\frac{\alpha^{10} + \beta^{10} + \sqrt{2} \left(\alpha^9 + \beta^9\right)}{2 \left(\alpha^8 + \beta^8\right)}$$
$$\frac{\alpha^8 \left(\alpha^2 + \sqrt{2}\alpha\right) + \beta^8 \left(\beta^2 + \sqrt{2}\alpha\right)}{2 \left(\alpha^2 + \beta^8\right)}$$

$$\frac{8\alpha + \beta^8}{2(\alpha + \beta^8)} = 4$$

29. If the system of equations

 $2x + 7y + \lambda z = 3$ 3x + 2y + 5z = 4 $x + \mu y + 32z = -1$ has infinitely many solutions, then $(\lambda - \mu)$ is equal to ______:

Ans. (38)

Sol. $D = D_1 = D_2 = D_3 = 0$

$$D_{3} = \begin{vmatrix} 2 & 7 & 3 \\ 3 & 2 & 4 \\ 1 & \mu & - \end{vmatrix} = 0 \Longrightarrow \mu = -39$$
$$D = \begin{vmatrix} 2 & \lambda \\ 3 & 2 & 5 \\ 1 & -39 & 32 \end{vmatrix} = 0 \Longrightarrow \lambda = -1$$
$$\lambda - \mu = 38$$

30. If the solution y(x) of the given differential equation $(e^{y} + 1) \cos x \, dx + e^{y} \sin x \, dy = 0$ passes through the point $\left(\frac{\pi}{2}, 0\right)$, then the value of $e^{y\left(\frac{\pi}{6}\right)}$ is equal to ______. Ans. (3) Sol. $(e^{y} + 1) \cos x \, dx + e^{y} \sin x \, dy = 0$ $d((e^{y} + 1) \sin x) = 0$ $(e^{y} - 1) \sin x = C$ It passes through $\left(\frac{\pi}{2}, 0\right)$ $\Rightarrow c = 2$ Now, $x = \frac{\pi}{6}$ $\Rightarrow e^{y} = 3$

TIME: 3:00 PM to 6:00 PM

(Held On Saturday 06th April, 2024)

PHYSICS	TEST PAPER WITH SOLUTION
SECTION-A SECTION-A 31. The longest wavelength associated with Paschen series is : (Given R _H =1.097 × 10 ⁷ SI unit) (1) 1.094 × 10 ⁻⁶ m (2) 2.973 × 10 ⁻⁶ m (3) 3.646 × 10 ⁻⁶ m (4) 1.876 × 10 ⁻⁶ m Ans. (4) Sol. For longest wavelength in Paschen's series: $\frac{1}{\lambda} = R\left[\frac{1}{n_1^2} - \frac{1}{n_2^2}\right]$ For longest n ₁ = 3 n ₂ = 4 $\frac{1}{\lambda} = R\left[\frac{1}{(3)^2} - \frac{1}{(4)^2}\right]$ $\frac{1}{\lambda} = R\left[\frac{1}{9} - \frac{1}{16}\right]$ $\frac{1}{\lambda} = R\left[\frac{16-9}{16\times9}\right]$ $\Rightarrow \lambda = \frac{16\times9}{7R} = \frac{16\times9}{7\times1.097\times10^7}$ $\lambda = 1.876 \times 10^{-6} \text{ m}$	33. In finding out refractive index of glass slab th following observations were made throug travelling microscope 50 vernier scale division 49 MSD; 20 divisions on main scale in each cr For mark on paper MSR = 8.45 cm, VC = 26 For mark on paper seen through slab MSR = 7.12 cm, VC = 41 For powder particle on the top surface of the glass slab MSR = 4.05 cm, VC = 1 (MSR = Main Scale Reading, VC = Vernie Coincidence) Refractive index of the glass slab is: (1) 1.42 (2) 1.52 (3) 1.24 (4) 1.35 Ans. (1) Sol. 1 MSD = $\frac{1 \text{cm}}{20}$ = 0.05 cm
32. A total of 48 J heat is given to one mole of helium kept in a cylinder. The temperature of helium increases by 2°C. The work done by the gas is : (Given, R = 8.3 J K ⁻¹ mol ⁻¹ .) (1) 72.9 J (2) 24.9 J (3) 48 J (4) 23.1 J Ans. (4) Sol. 1 st law of thermodynamics $\Delta Q = \Delta U + W$ $\Rightarrow +48 = nC_v\Delta T + W$ $\Rightarrow 48 = (1) \left(\frac{3R}{2}\right)(2) + W$ $\Rightarrow W = 48 - 3 \times R$ $\Rightarrow W = 48 - 3 \times (8.3)$ $\Rightarrow W = 23.1 \text{ Joule}$	$1 \text{ VSD} = \frac{49}{50} \text{ MSD} = \frac{49}{50} \times 0.05 \text{ cm} = 0.049 \text{ cm}$ $LC = 1\text{MSD} - 1\text{VSD} = 0.001 \text{ cm}$ For mark on paper, L ₁ = 8.45 cm + 26 × 0.001 cm = 84.76 mm For mark on paper through slab, L2 = 7.12 cm + 41 × 0.001 cm = 71.61 mm For powder particle on top surface, ZE = 4.05 cm + 1 × 0.001 cm = 40.51 mm $\therefore \text{ actual } L_1 = 84.76 - 40.51 = 44.25 \text{ mm}$ actual L2 = 71.61 - 40.51 = 31.10 mm $L_2 = \frac{L_1}{\mu}$ $\Rightarrow \mu = \frac{L_1}{L_2} = \frac{44.25}{31.10} = 1.42$

In the given electromagnetic wave 34. $E_v = 600 \sin (\omega t - kx) Vm^{-1}$, intensity of the associated light beam is (in W/m²); (Given $\epsilon_0 =$ $9 \times 10^{-12} \text{C}^2 \text{N}^{-1} \text{m}^{-2}$ (1) 486(2) 243(3)729(4)972Ans. (1) $=\frac{1}{2}\varepsilon_0 E_0^2 c$ Sol. Intensity $=\frac{1}{2} \times 9 \times 10^{-12} \times (600)^2 \times 3 \times 10^8$ $=\frac{9}{2} \times 36 \times 3 = 486 \text{ w/m}^2$ Assuming the earth to be a sphere of uniform mass 35. density, a body weighed 300 N on the surface of earth. How much it would weigh at R/4 depth under surface of earth? (1) 75 N (2) 375 N (3) 300 N (4) 225 N Ans. (4) Sol. At surface: mg = 300 N $m = \frac{300}{g}$ At Depth $\frac{R}{4}$: $g_d = g_s \left[1 - \frac{d}{R} \right]$ $g_{d} = g_{s} \left[1 - \frac{R}{4R} \right]$ $g_d = \frac{3g_s}{4}$ weight at depth $= m \times g_d$ $= m \times \frac{3g_s}{4}$ $=\frac{3}{4}\times 300$ = 225 N

- 36. The acceptor level of a p-type semiconductor is 6eV. The maximum wavelength of light which can create a hole would be : Given hc = 1242 eV nm.
 - (1) 407 nm (2) 414 nm (3) 207 nm (4) 103.5 nm
- Ans. (3)

- **Sol.** Energy = $\frac{hc}{\lambda}$; $E = \frac{1240}{\lambda(nm)} eV$ $6 = \frac{1240}{\lambda(nm)}$ $\lambda = \frac{1240}{6} = 207 \text{nm}$
- 37. A car of 800 kg is taking turn on a banked road of radius 300 m and angle of banking 30°. If coefficient of static friction is 0.2 then the maximum speed with which car can negotiate the turn safely : (g = 10 m/s², $\sqrt{3}$ =1.73)
 - (1) 70.4 m/s(2) 51.4 m/s
 - (4) 102.8 m/s (3) 264 m/s

+μ anθ

Ans. (2)

Sol. m = 800 kg
r = 300 m
$$\theta = 30^{\circ}$$

 $\mu_{s} = 0.2$
 $V_{max} = \sqrt{Rg\left[\frac{\tan\theta + \mu}{1 - \mu\tan\theta}\right]}$
 $= \sqrt{300 \times g \times \left[\frac{\tan 30^{\circ} + 0.2}{1 - 0.2 \times \tan 30^{\circ}}\right]}$

$$= \sqrt{300 \times 10 \times \left[\frac{0.57 + 0.2}{1 - 0.2 \times 0.57}\right]}$$

 $V_{max} = 51.4 \text{ m/s}$

38. Two identical conducting spheres P and S with charge Q on each, repel each other with a force 16N. A third identical uncharged conducting sphere R is successively brought in contact with the two spheres. The new force of repulsion between P and S is :

(2) 6 N (1) 4 N

(3) 1 N (4) 12 N

Ans. (2) Sol.

$$Q$$
 Q Q 0 R

 $F_{PS} \propto Q^2$ $F_{PS} = 16 N$

Now If P & R are brought in contact then

$$Q/2$$
 Q Q/2
P S R

Now If S & R are brought in contact then

$$\left(\begin{array}{c} Q/2 \\ P \\ \end{array}\right) \left(\begin{array}{c} 3Q/4 \\ S \\ \end{array}\right) \left(\begin{array}{c} 3Q/4 \\ R \\ \end{array}\right)$$

New force between P & S is :

$$F_{PS} \propto \frac{Q}{2} \times \frac{3Q}{4}$$
$$F_{PS} \propto \frac{3Q^2}{8} = \frac{3}{8} \times 16 = 6N$$

- 39. In a coil, the current changes form -2 A to +2A in 0.2 s and induces an emf of 0.1 V. The self-inductance of the coil is :
 - (1) 5 mH (2) 1 mH
 - (3) 2.5 mH (4) 4 mH

Ans. (1)

Sol. $(Emf)_{induced} = -L\frac{di}{dt}$

In magnitude form,

$$\left| \text{Emf}_{\text{ind}} \right| = \left| (-) \text{L} \frac{\text{di}}{\text{dt}} \right|$$
$$\Rightarrow 0.1 = \frac{(\text{L})[+2 - (-2)]}{0.2}$$
$$\Rightarrow \text{L} = \frac{0.1 \times 0.2}{4} = 5 \text{mH}$$

40. For the thin convex lens, the radii of curvature are at 15 cm and 30 cm respectively. The focal length the lens is 20 cm. The refractive index of the material is :

(1) 1.2	(2) 1.4
(3) 1.5	(4) 1.8
(2)	

Ans. (3)

Sol.
$$\frac{1}{f} = \left(\frac{\mu_{\text{lens}}}{\mu_{\text{air}}} - 1\right) \left(\frac{1}{R_1} - \frac{1}{R_2}\right)$$
$$\Rightarrow \frac{1}{+20} = \left(\frac{\mu}{1} - 1\right) \left(\frac{1}{+15} - \frac{1}{(-30)}\right)$$
$$\Rightarrow \frac{1}{20} = (\mu - 1) \left(\frac{3}{30}\right)$$
$$\Rightarrow \mu - 1 = \frac{1}{2}$$
$$\Rightarrow \boxed{\mu = 1 + \frac{1}{2} = \frac{3}{2} = 1 \cdot 5}$$

41. Energy of 10 non rigid diatomic molecules at temperature T is :

(1)
$$\frac{7}{2}$$
 RT (2) 70 K_BT

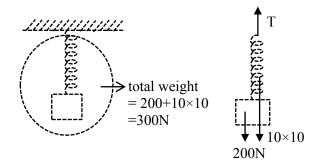
(3) 35 RT (4) 35
$$K_BT$$

Ans. (4)

Sol. Degree of freedom(f) =
$$5 + 2(3N - 5)$$

$$f = 5 + 2(3 \times 2 - 1) = 7$$

energy of one molecule = $\frac{f}{2}K_{B}T$


energy of 10 molecules

$$= 10\left(\frac{f}{2}K_{B}T\right) = 10\left(\frac{7}{2}K_{B}T\right) = 35 K_{B}T$$

- **42.** A body of weight 200 N is suspended form a tree branch thought a chain of mass 10 kg. The branch pulls the chain by a force equal to (if $g = 10 \text{ m/s}^2$):
 - (1) 150 N (2) 300 N (3) 200 N (4) 100 N

Ans. (2)

Sol.

Chain block system is in equilibrium so T = 200 + 100 = 300 N.

43. When UV light of wavelength 300 nm is incident on the metal surface having work function 2.13 eV, electron emission takes place. The stopping potential is : (Given hc = 1240 eV nm) (1) 4 V (2) 4.1 V (3) 2 V (4) 1.5 V

Sol.
$$\frac{hc}{\lambda} - \phi = e.V_s$$

 $\Rightarrow \frac{1240}{300} eV - 2.13 eV = eVs$
 $\Rightarrow 4.13 eV - 2.13 eV = eVs.$
 $\Rightarrow So, V_s = 2volt$

44. The number of electrons flowing per second in the filament of a 110 W bulb operating at 220 V is : (Given $e = 1.6 \times 10^{-19}$ C)

(1)
$$31.25 \times 10^{17}$$
 (2) 6.25×10^{18}
(3) 6.25×10^{17} (4) 1.25×10^{19}

Ans. (1)

Sol. Power (P) = V.I

$$\Rightarrow 110 = (220) (I)$$

$$\Rightarrow I = 0.5 A$$
Now, $I = \frac{n \cdot e}{t}$

$$\Rightarrow 0.5 = \left(\frac{n}{t}\right) (1.6 \times 10^{-1})$$

$$\Rightarrow \frac{n}{t} = \frac{0.5}{1.6 \times 10^{-19}}$$

$$\Rightarrow \boxed{\frac{n}{t} = 31.25 \times 10^{17}}$$

45. When kinetic energy of a body becomes 36 times of its original value, the percentage increase in the momentum of the body will be :

(1) 500%	(2) 600%
(3) 6%	(4) 60%

- Ans. (1)
- Sol. Kinetic energy (K) = $\frac{P^2}{2m}$ $\Rightarrow P = \sqrt{2mK}$ If $K_f = 36 K_i$ So, $P_f = 6 P_i$ % increase in momentum = $\frac{P_f - P_i}{P_i} \times 100\%$ $= \frac{6P_i - P_i}{P_i} \times 100\%$ = 500%

46. Pressure inside a soap bubble is greater than the pressure outside by an amount : (given : R = Radius of bubble, S = Surface tension of bubble)

$$(1) \frac{43}{R} \qquad (2) \frac{44}{S}$$
$$(3) \frac{S}{R} \qquad (4) \frac{2S}{R}$$

Ans. (1)

Sol. There are two liquid-air surfaces in bubble so

$$\Delta P = 2\left(\frac{2S}{R}\right) = \frac{4S}{R}$$

47. Match List-I with List-II

	List-I		List-II
	(Y vs X)	(Sha	pe of Graph)
(A)	Y = magnetic susceptibility X = magnetising field	(I)	Y X
(B)	Y = magnetic field X = distance from centre of a current carrying wire for x < a (where a=radius of wire)	(II)	Y X
(C)	Y = magnetic field X = distance from centre of a current carrying wire for $x > a$ (where $a =$ radius of wire)	(III)	Y X
(D)	Y= magnetic field inside solenoid X = distance from center	(IV)	Y

Choose the correct answer from the options given below :

(1) (A)-(III), (B)-(I), (C)-(IV), (D)-(II) (2) (A)-(I), (B)-(III), (C)-(II), (D)-(IV) (3) (A)-(IV), (B)-(I), (C)-(III), (D)-(II) (4) (A)-(III), (B)-(IV), (C)-(I), (D)-(II)

(A) Graph between Magnetic susceptibility and Sol. magnetising field is :

(B) magnetic field due to a current carrying wire for x < a:

(C) magnetic field due to a current carrying wire for x > a:

(D) magnetic field inside solenoid varies as:

In a vernier calliper, when both jaws touch each 48. other, zero of the vernier scale shifts towards left and its 4th division coincides exactly with a certain division on main scale. If 50 vernier scale divisions equal to 49 main scale divisions and zero error in the instrument is 0.04 mm then how many main scale divisions are there in 1 cm?

(1) 40	(2) 5
(3) 20	(4) 10

NTA Ans. (3)

Ans. (Bonus)

4th division coincides with 3rd division then Sol. 0.004 cm = 4VSD - 3MSD49MSD = 50 VSD1MSD = $\frac{1}{N}$ cm $0.004 = 4\left\{\frac{49}{50}\text{MSD}\right\} - 3\text{MSD}$ $0.004 = \left(\frac{196}{50} - 3\right) \left(\frac{1}{N}\right)$

$$N = \frac{46}{50} \times \frac{1000}{4} = \frac{46 \times 1000}{200} = 230$$

49. Given below are two statements :

Statement (I) : Dimensions of specific heat is $[L^{2}T^{-2}K^{-1}]$

Statement (II) : Dimensions of gas constant is $[M L^{2}T^{-1}K^{-1}]$

- (1) Statement (I) is incorrect but statement (II) is correct
- (2) Both statement (I) and statement (II) are incorrect
- (3) Statement (I) is correct but statement (II) is incorrect
- (4) Both statement (I) and statement (II) are correct

Sol. $\Delta Q = mS\Delta T$

$$\mathbf{s} = \frac{\Delta \mathbf{Q}}{\mathbf{m}\Delta \mathbf{T}}$$

$$[\mathbf{s}] = \left[\frac{\mathrm{ML}^{2}\mathrm{T}^{-2}}{\mathrm{MK}}\right]$$

$$[s] = [L^2 T^{-2} K^{-1}]$$

Statement-(I) is correct

$$PV = nRT \implies R = \frac{PV}{nT}$$

$$[R] = \frac{[ML^{-1}T^{-2}][L^3]}{[mol][K]}$$

$$[R] = [ML2T-2 mol-1K-1]$$

Statement-II is incorrect

A body projected vertically upwards with a certain

speed from the top of a tower reaches the ground in
$$t_1$$
. If it is projected vertically downwards from the same point with the same speed, it reaches the ground in t_2 . Time required to reach the ground, if it is dropped from the top of the tower, is :

(1)
$$\sqrt{t_1 t_2}$$
 (2) $\sqrt{t_1 - t_2}$

3)
$$\sqrt{\frac{t_1}{t_2}}$$
 (4) $\sqrt{t_1 + t_2}$

Ans. (1)

(

50.

Sol.
$$t_{1} = \frac{u + \sqrt{u^{2} + 2gh}}{g}$$
$$t_{2} = \frac{-u + \sqrt{u^{2} + 2gh}}{g}$$
$$t = \frac{\sqrt{2gh}}{g}$$
$$t_{1}t_{2} = \frac{(u^{2} + 2gh) - u^{2}}{g^{2}} = \frac{2gh}{g^{2}} = t^{2}$$
$$\Rightarrow t = \sqrt{t_{1}t_{2}}$$

SECTION-B

51. In Franck-Hertz experiment, the first dip in the current-voltage graph for hydrogen is observed at 10.2 V. The wavelength of light emitted by hydrogen atom when excited to the first excitation level is _____ nm.

(Given hc = 1245 eV nm, e = 1.6×10^{-19} C).

Ans. (122)

Sol.
$$10.2 \text{ eV} = \frac{\text{hc}}{\lambda}$$

 $\lambda = \frac{1245 \text{ eV} - \text{nm}}{10.2 \text{ eV}} = 122.06 \text{ nm}$

52. For a given series LCR circuit it is found that maximum current is drawn when value of variable capacitance is 2.5 nF. If resistance of 200 Ω and 100 mH inductor is being used in the given circuit. The frequency of ac source is _____ × 10³ Hz. (given $\pi^2 = 10$)

Ans. (10)

Sol. for maximum current, circuit must be in resonance.

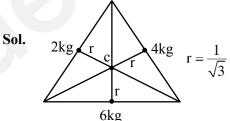
$$f_{0} = \frac{1}{2\pi\sqrt{L \times C}}$$

$$f_{0} = \frac{1}{2\pi\sqrt{100 \times 10^{-3} \times 2.5 \times 10^{-9}}}$$

$$= \frac{1}{2\pi\sqrt{25 \times 10^{-11}}}$$

$$= \frac{1}{2\pi \times 5} \times 10^{5} \times \sqrt{10} \text{ Hz}$$

$$= \frac{100}{10} \times 10^{3} \text{ Hz}$$


$$f_{0} = 10 \times 10^{3} \text{ Hz}$$

53. A particle moves in a straight line so that its displacement x at any time t is given by $x^{2}=1 + t^{2}$. Its acceleration at any time t is x^{-n} where n = 1

Ans.
$$\overline{(3)}$$

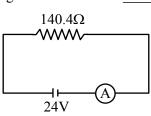
Sol. $x^2 = 1 + t^2$
 $2x \frac{dx}{dt} = 2t$
 $xv = t$
 $x \frac{dv}{dt} + v \frac{dx}{dt} = 1$
 $x.a+v^2 = 1$
 $a = \frac{1-v^2}{x} = \frac{1-t^2/x^2}{x}$
 $a = \frac{1}{x^3} = x^{-3}$

54. Three balls of masses 2kg, 4kg and 6kg respectively are arranged at centre of the edges of an equilateral triangle of side 2 m. The moment of inertia of the system about an axis through the centroid and perpendicular to the plane of triangle, will be _____ kg m².

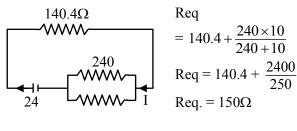
Ans. (4)

Moment of inertia about C and perpendicular to the plane is :

$$\hat{I} = r^{2} [2 + 4 + 6]$$
$$= \frac{1}{3} \times 12$$
$$I = 4 \text{ kg-m}^{2}$$

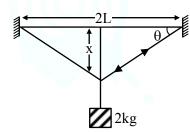

55. A coil having 100 turns, area of $5 \times 10^{-3} \text{m}^2$, carrying current of 1 mA is placed in uniform magnetic field of 0.20 T such a way that plane of coil is perpendicular to the magnetic field. The work done in turning the coil through 90° is _____ μ J.

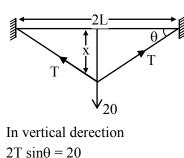
Ans. (100)


Sol.
$$W = \Delta U = U_f - U_i$$

 $W = (-\vec{\mu}.\vec{B})_f - (-\vec{\mu}.\vec{B})_i$
 $= 0 + (\vec{\mu}.\vec{B})_i$
 $= (100 \times 5 \times 10^{-3} \times 1 \times 10^{-3}) \times 0.2 \text{ J}$
 $= 1 \times 10^{-4} \text{ J} = 100 \text{ }\mu\text{J}$

56. In the given figure an ammeter A consists of a 240Ω coil connected in parallel to a 10 Ω shunt. The reading of the ammeter is _____ mA.


Ans. (160) Sol.


 $\therefore \text{ Current in ammeter} = \frac{24}{150}$ = 160 mA

57. A wire of cross sectional area A, modulus of elasticity 2×10^{11} Nm⁻² and length 2 m is stretched between two vertical rigid supports. When a mass of 2 kg is suspended at the middle it sags lower from its original position making angle $\theta = \frac{1}{100}$ radian on the points of support. The value of A is $_$ × 10⁻⁴ m² (consider x<<L).

 $(given : g=10 m/s^2)$

Ans. (1) Sol.

using small angle approximation $\sin\theta = \theta$ $\theta = \frac{1}{100}$

$$b = \frac{100}{100}$$

$$\therefore T = \frac{10}{\theta}$$

$$T = 1000N$$

Change in length $\Delta L = 2\sqrt{x^2 + L^2} - 2L$

$$= 2L\left[1 + \frac{x^2}{2L^2} - 1\right]$$

$$\Delta L = \frac{x^2}{L}$$

$$\therefore \text{ Modulus of elasticity} = \frac{\text{stress}}{\text{strain}}$$

$$2 \times 10^{11} = \frac{10^3}{A \times \frac{x^2}{L}} \times 2L$$

$$\therefore A = 1 \times 10^{-4} \text{ m}^2$$

There are benefit where the provide the provided of the

58. Two coherent monochromatic light beams of intensities I and 4I are superimposed. The difference between maximum and minimum possible intensities in the resulting beam is x I. The value of x is _____.

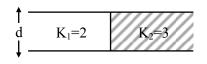
Ans. (8)

Sol.
$$I_{max} = \left(\sqrt{I} + \sqrt{4I}\right)^2 = 9I$$

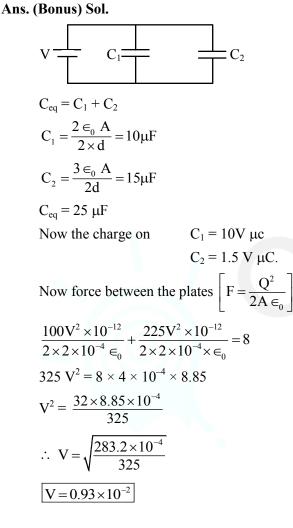
 $I_{min} = \left(\sqrt{4I} - \sqrt{I}\right)^2 = I$
 $\therefore I_{max} - I_{min} = 8I$

59. Two open organ pipes of length 60 cm and 90 cm resonate at 6th and 5th harmonics respectively. The difference of frequencies for the given modes is Hz.

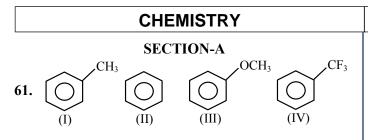
(Velocity of sound in air = 333 m/s)


Ans. (740)

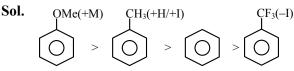
Sol. The difference in frequency in open organ pipe =


$$f = \frac{nv}{2L}$$
$$\Delta f = \frac{6v}{2 \times 0.6} - \frac{5v}{2 \times 0.9}$$
$$v = 333 \text{ m/s}$$
$$\Delta f = 740 \text{ Hz}$$

60. A capacitor of 10 μ F capacitance whose plates are separated by 10 mm through air and each plate has area 4 cm² is now filled equally with two dielectric media of K₁ = 2, K₂ = 3 respectively as shown in figure. If new force between the plates is 8 N. The supply voltage is _____ V.



NTA Ans. (80)


(Held On Saturday 06th April, 2024)

The **correct** arrangement for decreasing order of electrophilic substitution for above compounds

(1) (IV) > (I) > (II) > (III)(2) (III) > (I) > (I) > (IV)(3) (II) > (IV) > (III) > (I)(4) (III) > (IV) > (II) > (I)

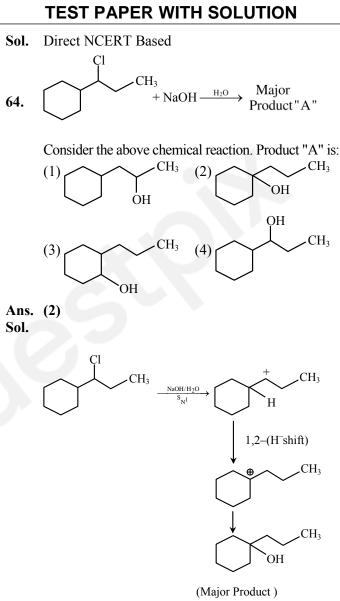
Ans. (2)

62. Molality (m) of 3 M aqueous solution of NaCl is: (Given : Density of solution = 1.25 g mL⁻¹, Molar mass in g mol⁻¹ : Na-23, Cl-35.5) (1) 2.90 m (2) 2.79 m (3) 1.90 m (4) 3.85 m

Ans. (2)

Sol. 3 moles are present in 1 litre solution molality = $\frac{3 \times 1000}{2}$ = 2

lality =
$$\frac{3 \times 1000}{1.25 \times 1000 - [3 \times 58.5]} = 2.79 \text{ m}$$

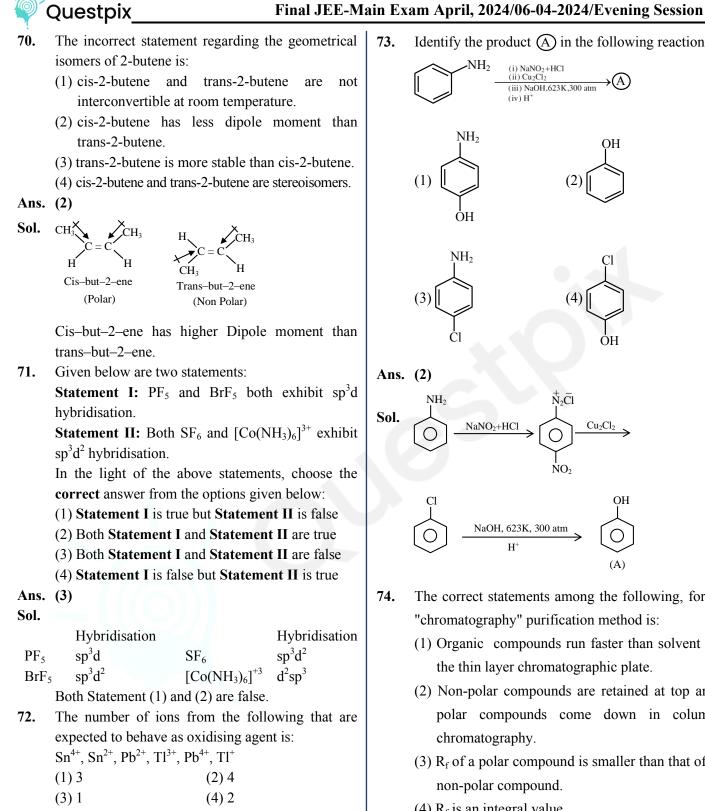

- 63. The incorrect statements regarding enzymes are: (A) Enzymes are biocatalysts.
 - (B) Enzymes are non-specific and can catalyse different kinds of reactions.
 - (C) Most Enzymes are globular proteins.
 - (D)Enzyme oxidase catalyses the hydrolysis of maltose into glucose.

Choose the correct answer from the option given below:

(1) (B) and (C)	(2) (B), (C) and (D)
(3) (B) and (D)	(4) (A), (B) and (C)

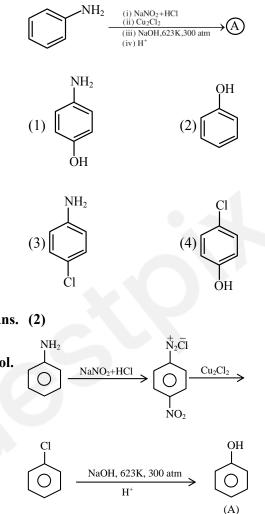
Ans. (3)

TIME: 3:00 PM to 6:00 PM


65. During the detection of acidic radical present in a salt, a student gets a pale yellow precipitate soluble with difficulty in NH₄OH solution when sodium carbonate extract was first acidified with dil. HNO₃ and then AgNO₃ solution was added. This indicates presence of:

(1)
$$Br^{-}$$
 (2) CO_{3}^{2-}

Ans. (1)


Final JEE-Main Exam April, 2024/06-04-2024/Evening Session

@	Questpix	Final JEE-M	ain Ex	xam April, 2024/06-04-2024/Evening Sessio
Sol.	$Ag^+ + I^- \rightarrow AgI$	Yellow ppt.	69.	The major products formed:
	$Ag^+ + Cl^- \rightarrow AgCl$	White ppt		OCH3
	$Ag^+ + Br^- \rightarrow AgBr$	Pale yellow ppt		
66.	How can an electrocher an electrolytic cell ?	mical cell be converted into		$\bigcup \xrightarrow{HNO_3, H_2SO_4} 'A' \xrightarrow{Br_2(excess)} 'B'$
	(1) Applying an externation E_{cell}^0	al opposite potential greater		A and B respectively are:
	(2) Reversing the flow of	of ions in salt bridge.		OCH ₃ OCH ₃
	(3) Applying an extern than E_{cell}^0 .	al opposite potential lower		(1) NO_2 and NO_2
		electrodes at anode and		Br
Ans.				
Sol.		tial should be greater than		OCH ₃ OCH ₃
	E_{cell}^0 in opposite directi	on.		Br
67.		elements in the increasing		(2) \bigcirc
	order of number of unpa (A) S a			\uparrow
	(A) Sc (C) V	(B) Cr (D) Ti		NO ₂ NO ₂
	(E) Mn	(D) 11		
	Choose the correct ans	wer from the options given		QCH ₃ QCH ₃
	below:			$\sqrt{NO_2}$ $\sqrt{NO_2}$
	(1) (C) $<$ (E) $<$ (B) $<$ (A (2) (B) $<$ (C) $<$ (D) $<$ (E	$\Delta (D) \leq (D)$		(3) (3)
	(2) (B) < (C) < (D) < (E) (3) (A) < (D) < (C) < (E)			
	(4) (A) < (D) < (C) < (E)			l Br
Ans.	(4)	, , , ,		
Sol.	Unpaired electron			OCH ₃ OCH ₃
	Sc[Ar] 4s2 3d1Cr[Ar] 4s1 3d5	1 6		
	$V[Ar] 4s^2 3d^3$	3		(4) \bigcirc \uparrow and \bigcirc \bigcirc \uparrow
	Ti : [Ar] $4s^2 3d^2$	2		
	Mn : $[Ar] 4s^2 3d^5$	5		I I NO ₂ NO ₂
68.	Match List-I with List-			
	List-I Alkali Metal	List-II Emission Wavelength	Ang	(3)
	Aikaii Wittai	in nm		(2)
	(A) Li	(I) 589.2	Sol.	OMe OMe
	(B) Na	(II) 455.5		$\begin{array}{ c c }\hline & & & & & & \\ \hline & & & & & & & \\ \hline & & & &$
	(C) Rb	(III) 670.8		
	(D) Cs Choose the correct ans	(IV) 780.0 wer from the options given		NO_2 (A)
	below:	wer nom me opnons given		
	(1) (A)-(I), (B)-(IV), (C)-(III), (D)-(II)		OMe OMe Br Br Br
	(2) (A)-(III), (B)-(I), (C			$ \begin{array}{c} & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & $
	(3) (A)-(IV), (B)-(II), (O)			Fe
Ans.	(4) (A)-(II), (B)-(IV), (0 (2)	∠)-(III), (D)-(I)		NO_2 NO_2 (B)
Sol.	Fact Based			
			•	

- Ans. (4)
- **Sol.** Due to inert pair effect; $T\ell^{+3}$ and Pb^{+4} can behave as oxidising agents.

Identify the product (A) in the following reaction.

- The correct statements among the following, for a "chromatography" purification method is:
 - (1) Organic compounds run faster than solvent in the thin layer chromatographic plate.
 - (2) Non-polar compounds are retained at top and polar compounds come down in column chromatography.
 - (3) R_f of a polar compound is smaller than that of a non-polar compound.
 - (4) R_f is an integral value.

Ans. (3)

Non polar compounds are having higher value of Sol. R_f than polar compound.

Questpix_

75.		statements related to group
	14 elements for their cor	rectness.
	(A)Covalent radius de from C to Pb in a reg	creases down the group
	-	creases from C to Pb down
	the group gradually.	
		e of C is 4 whereas other
	. ,	d their covalence due to
	presence of d orbitals	5.
	(D) Heavier elements do	not form $p\pi$ - $p\pi$ bonds.
	(E) Carbon can exhibit n	egative oxidation states.
		ver from the options given
	below:	
	(1) (C), (D) and (E) Only (2) (A) (D) and (C) Only	
Ans.	(3) (A), (B) and (C) Only	(4) (C) and (D) Only
Ans. Sol.	(1)(A) Down the group; rad	ius increases
501	• • •	e gradually from C to Pb.
	(C) Correct.	e gradaany nom e to ro.
	(D) Correct.	
	(E) Range of oxidation s	tate of carbon ; -4 to $+4$
76.	Match List-I with the Li	
	List-I	List-II
	List-I Reaction	List-II Type of redox reaction
(A) N		
(B) 2	Reaction $N_{2(g)} + O_{2(g)} \rightarrow 2NO_{(g)}$ $Pb(NO_3)_{2(s)}$	Type of redox reaction(I) Decomposition(II) Displacement
(B) 2 	Reaction $N_{2(g)} + O_{2(g)} \rightarrow 2NO_{(g)}$ $Pb(NO_3)_{2(s)}$ $\Rightarrow 2PbO_{(s)} + 4NO_{2(g)} + O_{2(g)}$	Type of redox reaction (I) Decomposition (II) Displacement
(B) 2 (C) 2	Reaction $V_{2(g)} + O_{2(g)} \rightarrow 2NO_{(g)}$ $Pb(NO_3)_{2(s)}$ $\Rightarrow 2PbO_{(s)} + 4NO_{2(g)} + O_{2(g)}$ $Na_{(s)} + 2H_2O_{(l)}$	Type of redox reaction(I) Decomposition(II) Displacement
(B) 2 (C) 2	Reaction $N_{2(g)} + O_{2(g)} \rightarrow 2NO_{(g)}$ $Pb(NO_3)_{2(s)}$ $\Rightarrow 2PbO_{(s)} + 4NO_{2(g)} + O_{2(g)}$ $Na_{(s)} + 2H_2O_{(1)}$ $\Rightarrow 2NaOH_{(aq.)} + H_{2(g)}$	Type of redox reaction (I) Decomposition (II) Displacement (III) Disproportionation
(B) 2 (C) 2 (D) 2	Reaction $V_{2(g)} + O_{2(g)} \rightarrow 2NO_{(g)}$ $Pb(NO_3)_{2(s)}$ $\Rightarrow 2PbO_{(s)} + 4NO_{2(g)} + O_{2(g)}$ $Na_{(s)} + 2H_2O_{(l)}$ $\Rightarrow 2NaOH_{(aq.)} + H_{2(g)}$ $NO_{2(g)} + 2^{-}OH_{(aq.)}$	Type of redox reaction (I) Decomposition (II) Displacement (III) Disproportionation (IV) Combination
(B) 2 (C) 2 (D) 2	Reaction $V_{2(g)} + O_{2(g)} \rightarrow 2NO_{(g)}$ $Pb(NO_3)_{2(s)}$ → 2PbO _(s) + 4NO _{2(g)} + O _{2(g)} Na _(s) + 2H ₂ O _(l) → 2NaOH _(aq.) + H _{2(g)} $NO_{2(g)} + 2^{-}OH_{(aq.)}$ → NO ⁻ _{2(aq.)} + NO ⁻ _{3(aq.)} + H ₂	Type of redox reaction (I) Decomposition (II) Displacement (III) Disproportionation (IV) Combination ₂ O ₍₁₎
(B) 2 (C) 2 (D) 2	Reaction $V_{2(g)} + O_{2(g)} \rightarrow 2NO_{(g)}$ $Pb(NO_3)_{2(s)}$ $\Rightarrow 2PbO_{(s)} + 4NO_{2(g)} + O_{2(g)}$ $Na_{(s)} + 2H_2O_{(l)}$ $\Rightarrow 2NaOH_{(aq.)} + H_{2(g)}$ $NO_{2(g)} + 2^{-}OH_{(aq.)}$ $\Rightarrow NO_{2(aq.)}^{-} + NO_{3(aq.)}^{-} + H_{2(g)}$ Choose the correct answer	Type of redox reaction (I) Decomposition (II) Displacement (III) Disproportionation (IV) Combination
(B) 2 (C) 2 (D) 2	Reaction $V_{2(g)} + O_{2(g)} \rightarrow 2NO_{(g)}$ $Pb(NO_3)_{2(s)}$ $\Rightarrow 2PbO_{(s)} + 4NO_{2(g)} + O_{2(g)}$ $Na_{(s)} + 2H_2O_{(l)}$ $\Rightarrow 2NaOH_{(aq.)} + H_{2(g)}$ $NO_{2(g)} + 2^{-}OH_{(aq.)}$ $\Rightarrow NO_{2(aq.)}^{-} + NO_{3(aq.)}^{-} + H_{2(g)}$ Choose the correct answer below:	Type of redox reaction (I) Decomposition (II) Displacement (III) Disproportionation (IV) Combination ${}_{2}O_{(1)}$ wer from the options given
(B) 2 (C) 2 (D) 2	Reaction $V_{2(g)} + O_{2(g)} \rightarrow 2NO_{(g)}$ Pb(NO ₃) _{2(s)} ⇒ 2PbO _(s) + 4NO _{2(g)} + O _{2(g)} Na _(s) + 2H ₂ O ₍₁₎ ⇒ 2NaOH _(aq.) + H _{2(g)} NO _{2(g)} + 2 ⁻ OH _(aq.) ⇒ NO _{2(aq.)} + NO _{3(aq.)} + H ₂ Choose the correct answ below: (1) (A)-(I), (B)-(II), (C)-4	Type of redox reaction (I) Decomposition (II) Displacement (III) Disproportionation (IV) Combination $_{2}O_{(1)}$ wer from the options given (III), (D)-(IV)
(B) 2 (C) 2 (D) 2	Reaction $V_{2(g)} + O_{2(g)} \rightarrow 2NO_{(g)}$ $Pb(NO_3)_{2(s)}$ $\Rightarrow 2PbO_{(s)} + 4NO_{2(g)} + O_{2(g)}$ $Na_{(s)} + 2H_2O_{(l)}$ $\Rightarrow 2NaOH_{(aq.)} + H_{2(g)}$ $NO_{2(g)} + 2^{-}OH_{(aq.)}$ $\Rightarrow NO_{2(aq.)}^{-} + NO_{3(aq.)}^{-} + H_{2(g)}$ Choose the correct answer below:	Type of redox reaction (I) Decomposition (II) Displacement (III) Disproportionation (IV) Combination $_{2}O_{(1)}$ wer from the options given (III), (D)-(IV)
(B) 2 (C) 2 (D) 2	Reaction $V_{2(g)} + O_{2(g)} \rightarrow 2NO_{(g)}$ Pb(NO ₃) _{2(s)} ⇒ 2PbO _(s) + 4NO _{2(g)} + O _{2(g)} Na _(s) + 2H ₂ O ₍₁₎ ⇒ 2NaOH _(aq.) + H _{2(g)} NO _{2(g)} + 2 ⁻ OH _(aq.) ⇒ NO _{2(aq.)} + NO _{3(aq.)} + H ₂ Choose the correct answ below: (1) (A)-(I), (B)-(II), (C)-4	Type of redox reaction (I) Decomposition (II) Displacement (III) Disproportionation (IV) Combination $_{2}O_{(1)}$ wer from the options given (III), (D)-(IV))-(I), (D)-(IV)
(B) 2 (C) 2 (D) 2	Reaction $V_{2(g)} + O_{2(g)} \rightarrow 2NO_{(g)}$ Pb(NO ₃) _{2(s)} ⇒ 2PbO _(s) + 4NO _{2(g)} + O _{2(g)} Na _(s) + 2H ₂ O ₍₁₎ ⇒ 2NaOH _(aq.) + H _{2(g)} NO _{2(g)} + 2 ⁻ OH _(aq.) ⇒ NO _{2(aq.)} + NO _{3(aq.)} + H ₂ Choose the correct answ below: (1) (A)-(I), (B)-(II), (C)-(C)-(C)	Type of redox reaction (I) Decomposition (II) Displacement (III) Disproportionation (IV) Combination $_{2}O_{(1)}$ wer from the options given (III), (D)-(IV))-(I), (D)-(IV))-(IV), (D)-(I)
(B) 2 (C) 2 (D) 2	Reaction $V_{2(g)} + O_{2(g)} \rightarrow 2NO_{(g)}$ Pb(NO ₃) _{2(s)} ⇒ 2PbO _(s) + 4NO _{2(g)} + O _{2(g)} Na _(s) + 2H ₂ O _(I) ⇒ 2NaOH _(aq.) + H _{2(g)} $NO_{2(g)} + 2^{-}OH_{(aq.)}$ ⇒ NO ⁻ _{2(aq.)} + NO ⁻ _{3(aq.)} + H ₂ Choose the correct answ below: (1) (A)-(I), (B)-(II), (C)-(C) (2) (A)-(III), (B)-(III), (C)-(C) (3) (A)-(IV), (B)-(I), (C)-(C) (4) (A)-(IV), (B)-(I), (C)-(C)	Type of redox reaction (I) Decomposition (II) Displacement (III) Disproportionation (IV) Combination $_{2}O_{(1)}$ wer from the options given (III), (D)-(IV))-(I), (D)-(IV))-(IV), (D)-(I)
(B) 2 (C) 2 (D) 2 	Reaction $V_{2(g)} + O_{2(g)} \rightarrow 2NO_{(g)}$ Pb(NO ₃) _{2(s)} ⇒ 2PbO _(s) + 4NO _{2(g)} + O _{2(g)} Na _(s) + 2H ₂ O _(I) ⇒ 2NaOH _(aq.) + H _{2(g)} $NO_{2(g)} + 2^{-}OH_{(aq.)}$ ⇒ NO ⁻ _{2(aq.)} + NO ⁻ _{3(aq.)} + H ₂ Choose the correct answ below: (1) (A)-(I), (B)-(II), (C)-(C) (2) (A)-(III), (B)-(III), (C)-(C) (3) (A)-(IV), (B)-(I), (C)-(C) (4) (A)-(IV), (B)-(I), (C)-(C)	Type of redox reaction (I) Decomposition (II) Displacement (III) Disproportionation (IV) Combination $_{2}O_{(1)}$ wer from the options given (III), (D)-(IV))-(I), (D)-(IV))-(IV), (D)-(I)
(B) 2 (C) 2 (D) 2 	Reaction $V_{2(g)} + O_{2(g)} \rightarrow 2NO_{(g)}$ Pb(NO ₃) _{2(s)} ⇒ 2PbO _(s) + 4NO _{2(g)} + O _{2(g)} Na _(s) + 2H ₂ O _(I) ⇒ 2NaOH _(aq.) + H _{2(g)} NO _{2(g)} + 2 ⁻ OH _(aq.) ⇒ NO ⁻ _{2(aq.)} + NO ⁻ _{3(aq.)} + H ₂ Choose the correct answ below: (1) (A)-(I), (B)-(II), (C)-(C) (2) (A)-(III), (B)-(III), (C) (3) (A)-(IV), (B)-(II), (C) (4) (A)-(IV), (B)-(I), (C) (4)	Type of redox reaction (I) Decomposition (II) Displacement (III) Disproportionation (IV) Combination $_{2}O_{(1)}$ wer from the options given (III), (D)-(IV))-(I), (D)-(IV))-(IV), (D)-(I)
(B) 2 (C) 2 (D) 2 	Reaction $V_{2(g)} + O_{2(g)} \rightarrow 2NO_{(g)}$ Pb(NO ₃) _{2(s)} ⇒ 2PbO _(s) + 4NO _{2(g)} + O _{2(g)} Na _(s) + 2H ₂ O ₍₁₎ ⇒ 2NaOH _(aq.) + H _{2(g)} NO _{2(g)} + 2 ⁻ OH _(aq.) ⇒ NO _{2(aq.)} + NO _{3(aq.)} + H ₂ Choose the correct answ below: (1) (A)-(I), (B)-(II), (C)-(2) (2) (A)-(III), (B)-(II), (C) (3) (A)-(IV), (B)-(II), (C) (4) (A) → (IV)	Type of redox reaction (I) Decomposition (II) Displacement (III) Disproportionation (IV) Combination $_{2}O_{(1)}$ wer from the options given (III), (D)-(IV))-(I), (D)-(IV))-(IV), (D)-(I)
(B) 2 (C) 2 (D) 2 	Reaction $V_{2(g)} + O_{2(g)} \rightarrow 2NO_{(g)}$ Pb(NO ₃) _{2(s)} ⇒ 2PbO _(s) + 4NO _{2(g)} + O _{2(g)} Na _(s) + 2H ₂ O _(l) ⇒ 2NaOH _(aq.) + H _{2(g)} NO _{2(g)} + 2 ⁻ OH _(aq.) ⇒ NO _{2(aq.)} + NO _{3(aq.)} + H ₂ Choose the correct answ below: (1) (A)-(I), (B)-(II), (C)-(C) (2) (A)-(III), (B)-(III), (C) (3) (A)-(IV), (B)-(III), (C) (4) A → (IV) B → (I)	Type of redox reaction (I) Decomposition (II) Displacement (III) Disproportionation (IV) Combination $_{2}O_{(1)}$ wer from the options given (III), (D)-(IV))-(I), (D)-(IV))-(IV), (D)-(I)

77. Consider the given reaction, identify the major product P.

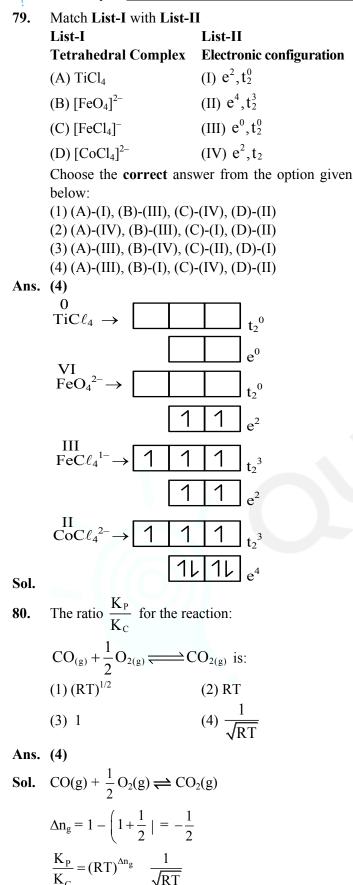
$$CH_{3} - COOH \xrightarrow{(i) LiAlH_{4} (ii) PCC (iii) HCN/\overline{OH}}_{(iv) H_{2}O/\overline{OH}, \Delta} "P"$$

$$(1) CH_{3} - CH_{2} - CH_{2} - OH$$

$$(2) CH_{3} - CH_{2} - C - NH_{2}$$

$$(3) CH_{3} - CH_{2} - CH_{2}CH_{3}$$

$$(4) CH_{3} - CH - COOH$$
Ans. (4)


Sol.
$$CH_3 - COOH \xrightarrow{\text{LIAIH}_4} CH_3 - CH_2 - OH$$

 PCC
 0
 $CH_3 - C - H$
 HCN/OH
 $CH_3 - C - CN$
 H
 H
 $H_2O/OH, \Delta$
 $CH_3 - CH - COOH$
 OH

78. The correct IUPAC name of [PtBr₂(PMe₃)₂] is:

- (1) bis(trimethylphosphine)dibromoplatinum(II)
- (2) bis[bromo(trimethylphosphine)]platinum(II)
- (3) dibromobis(trimethylphosphine)platinum(II)
- (4) dibromodi(trimethylphosphine)platinum(II)
- Ans. (3)

Sol. Dibromo bis(trimethylphosphine) platinum (II)

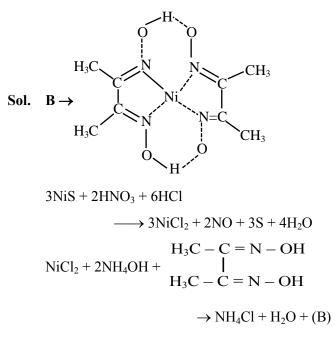
Questpix_

SECTION-B

81. An amine (X) is prepared by ammonolysis of benzyl chloride. On adding p-toluenesulphonyl chloride to it the solution remains clear. Molar mass of the amine (X) formed is _____ g mol⁻¹. (Given molar mass in gmol⁻¹ C : 12, H : 1, O : 16, N : 14)

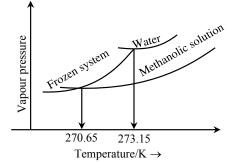
Ans. (287)

Sol.


$$(excess)$$
 $(excess)$
 $(H_2Cl \longrightarrow PhCH_2 - N-CH_2Ph \longrightarrow CH_2Ph (X) (3^\circ amine)$

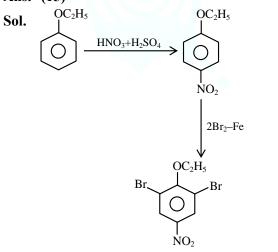
Molar Mass of (X) is 287 g mol^{-1}

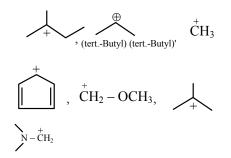
82. Consider the following reactions $NiS + HNO_3 + HCl \rightarrow A + NO + S + H_2O$ $A + NH_4OH + H_3C - C = N - OH$ $H_3C - C = N - OH$ $H_3C - C = N - OH$


The number of protons that do not involve in hydrogen bonding in the product B is_____.

Ans. (12)

83. When 'x' $\times 10^{-2}$ mL methanol (molar mass = 32 g; density = 0.792 g/cm³) is added to 100 mL water (density = 1 g/cm³), the following diagram is obtained.


x =.....(nearest integer) [Given: Molal freezing point depression constant of water at 273.15 K is 1.86 K kg mol⁻¹]


Ans. (543) Sol. $\Delta T_{\rm f} = 273 \ 15 - 270 \ 65 = 2.5 \ {\rm K}$

Sol.
$$\Delta T_f = 273.15 - 270.65 = 2.5 \text{ K}$$

 $\Delta T_f = K_f \text{ m} \Rightarrow 2.5 = 1.86 \times \frac{\text{n}}{0.1}$
 $\Rightarrow \text{ n} = 0.1344 \text{ moles}$
 $\Rightarrow \text{ w} = 0.1344 \times 32 = 4.3 \text{ g}$
Volume = $\frac{4.3}{0.792} = 5.43 \text{ ml} = 543 \times 10^{-2} \text{ ml}$
OC₂H₅
84. $\longrightarrow \text{P}_{\text{major}} \xrightarrow{2Br_2,Fe} \text{Q}_{\text{major}} \text{product}$

The ratio of number of oxygen atoms to bromine atoms in the product Q is $\times 10^{-1}$.

Ans. (15)

Ans. (5)

Sol.
$$\rightarrow$$
 $\stackrel{+}{\sim} \stackrel{-}{\sim} \stackrel{-}{\leftarrow}$
 $\stackrel{+}{C}_{H_3}$ $\stackrel{+}{\frown}$ $\stackrel{+}{C}_{H_2-O-CH_3}$
 \searrow_{N-CH_2}

86. For the reaction at 298 K, $2A + B \rightarrow C$. ΔH = 400 kJ mol⁻¹ and $\Delta S = 0.2$ kJ mol⁻¹ K⁻¹. The reaction will become spontaneous above K.

Ans. (2000)

Sol.
$$\Delta G = 0$$

$$T = \frac{\Delta H}{\Delta S} = \frac{400}{0.2} = 2000 \text{ K}$$

87. Total number of species from the following with central atom utilising $2p^2$ hybrid orbitals for bonding is.....

NH₃, SO₂, SiO₂, BeCl₂, C₂H₂, C₂H₄, BCl₃, HCHO,

 C_6H_6 , BF_3 , $C_2H_4Cl_2$

Ans. (6)

Sol. Central atom utilising sp² hybrid orbitals SO₂, C₂H₄, BCl₃, HCHO, C₆H₆, BF₃

Consider the two different first order reactions 88. given below $A + B \rightarrow C$ (Reaction 1) $P \rightarrow Q$ (Reaction 2) The ratio of the half life of Reaction 1 : Reaction 2 is 5 : 2. If t_1 and t_2 represent the time taken to complete $\frac{2}{3}^{rd}$ and $\frac{4}{5}^{th}$ of Reaction 1 and Reaction 2, respectively, then the value of the ratio $t_1 : t_2 \text{ is} \xrightarrow{} 10^{-1}$ (nearest integer). [Given: $\log_{10}(3) = 0.477$ and $\log_{10}(5) = 0.699$] Ans. (17) $=\frac{K_2}{K}=\frac{5}{2}$

Sol.
$$\frac{(t_{1/2})_{I}}{(t_{1/2})_{I}}$$

$$(t_{1/2})_{II} = K_1 = 2$$

$$\therefore K_1 t_1 = \ln \frac{1}{1 - \frac{2}{3}} = \ln 3$$

$$K_2 t_2 = \ln \frac{1}{1 - \frac{4}{5}} = \ln 5$$

$$\Rightarrow \frac{K_1}{K_2} \times \frac{t_1}{t_2} = \frac{0.477}{0.699}$$

$$\Rightarrow t_1 = 0.477 \times 5 = 1.7 = 17 \times 5$$

$$\Rightarrow \frac{t_1}{t_2} = \frac{0.477}{0.699} \times \frac{5}{2} = 1.7 = 17 \times 10^{-1}$$

89. For hydrogen atom, energy of an electron in first excited state is -3.4 eV, K.E. of the same electron of hydrogen atom is x eV. Value of x is $\times 10^{-1}$ eV. (Nearest integer)

Ans. (34)

Among VO_2^+ , MnO_4^- and $Cr_2O_7^{2-}$, the spin-only 90. magnetic moment value of the species with least oxidising ability isBM (Nearest integer).

(Given atomic member V = 23, Mn = 25, Cr = 24)

Ans. (0)

For 3d transition series; Sol. Oxidising power : $V^{+5} < Cr^{+6} < Mn^{+7}$ V^{+5} : [Ar] $4s^0 3d^0$

Number of unpaired electron = 0

 $\mu = 0$