

(Held On Monday 08th April, 2024)

TIME: 9:00 AM to 12:00 NOON

MATHEMATICS

SECTION-A

1. The value of $k \in \mathbb{N}$ for which the integral

$$I_n = \int\limits_0^1 (1-x^k)^n \, dx, \ n \, \in \, \mathbb{N}, \, \text{satisfies 147} \, \, I_{20} = 148 \, \, I_{21}$$

is

- (1) 10
- (2) 8
- (3) 14
- (4)7

Ans. (4)

Sol. $I_n = \int_0^1 (1-x^k)^n .1 \ dx$

$$I_n = (1 - x^k)^n . x - nk \int_0^1 (1 - x^k)^{n-1} . x^{k-1} . dx$$

$$I_{n} = nk \int_{0}^{1} [(1 - x^{k})^{n} - (1 - x^{k})^{n-1}] dx$$

$$I_n = nkI_n - nkI_n$$

$$\frac{I_n}{I_{n-1}} = \frac{nk}{nk+1}$$

$$\frac{I_{21}}{I_{20}} = \frac{21k}{1 + 21k}$$

$$=\frac{147}{148} \implies k=7$$

- 2. The sum of all the solutions of the equation $(8)^{2x} 16 \cdot (8)^{x} + 48 = 0$ is:
 - $(1) 1 + \log_6(8)$
- $(2) \log_8(6)$
- $(3) 1 + \log_8(6)$
- $(4) \log_8(4)$

Ans. (3)

Sol. $(8)^{2x} - 16 \cdot (8)^x + 48 = 0$

Put
$$8^x = t$$

$$t^2 - 16 + 48 = 0$$

$$\Rightarrow$$
 t = 4 or t = 12

$$\Rightarrow 8^x = 4$$
 $8^x = 12$

$$\Rightarrow$$
 x = log₈x

$$x = log_8 12$$

sum of solution = $log_84 + log_812$

$$= \log_8 48 = \log_8 (6.8)$$

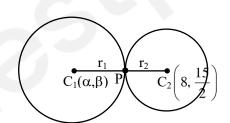
 $= 1 + \log_8 6$

TEST PAPER WITH SOLUTION

- 3. Let the circles $C_1: (x-\alpha)^2 + (y-\beta)^2 = r_1^2$ and $C_2: (x-8)^2 + \left(y-\frac{15}{2}\right)^2 = r_2^2$ touch each other externally at the point (6, 6). If the point (6, 6) divides the line segment joining the centres of the circles C_1 and C_2 internally in the ratio 2:1, then
 - (1) 110
- (2) 130
- (3) 125
- (4) 145

Ans. (2)

Sol.



 $(\alpha + \beta) + 4 \left(r_1^2 + r_2^2\right)$ equals

$$(\alpha,\beta)$$
 C_1 C_2 C_2 C_3 C_4 C_5 C_5 C_6 C_7 C_8 C_8 C_9

$$\therefore \frac{16+\alpha}{3} = 6 \text{ and } \frac{15+\beta}{3} = 6$$

$$\Rightarrow$$
 (α , β) \equiv (2, 3)

Also,
$$C_1C_2 = r_1 + r_2$$

$$\Rightarrow \sqrt{(2-8)^2 + \left(3 - \frac{15}{2}\right)^2} = 2r_2 + r$$

$$\Rightarrow$$
 $r_2 = \frac{5}{2} \Rightarrow r_1 = 2r_2 = 5$

$$\therefore (\alpha + \beta) + 4(r_1 + r^2)$$

$$= 5 + 4\left(\frac{25}{4} + 25\right) = 130$$

- Let P(x, y, z) be a point in the first octant, whose projection in the xy-plane is the point Q. Let $OP = \gamma$; the angle between OQ and the positive x-axis be θ ; and the angle between OP and the positive z-axis be ϕ , where O is the origin. Then the distance of P from the x-axis is:
 - (1) $\gamma \sqrt{1-\sin^2\phi\cos^2\theta}$
- (2) $\gamma \sqrt{1 + \cos^2 \theta \sin^2 \phi}$
- (3) $\gamma \sqrt{1 \sin^2 \theta \cos^2 \phi}$ (4) $\gamma \sqrt{1 + \cos^2 \phi \sin^2 \theta}$

Ans. (1)

Sol. $P(x, y, z), Q(x, y, O); x^2 + y^2 + z^2 = \gamma^2$ $\overline{OQ} = x\hat{i} + y\hat{i}$

$$cos\theta = \frac{x}{\sqrt{x^2 + y^2}}$$

$$\cos\!\phi = \frac{z}{\sqrt{x^2 + y^2 + z^2}}$$

$$\Rightarrow \sin^2 \phi = \frac{x^2 + y^2}{x^2 + y^2 + z^2}$$

distance of P from x-axis $\sqrt{y + z^2}$

$$\Rightarrow \sqrt{\gamma - x^2} \Rightarrow \gamma \sqrt{1 + \frac{x^2}{\gamma^2}}$$

- $= \gamma \sqrt{1 \cos \theta \sin^2 \phi}$
- 5. The number of critical points of the function $f(x) = (x-2)^{2/3} (2x+1)$ is:
 - (1) 2

(3) 1

(4) 3

Ans. (1)

Sol. $f(x) = (x-2)^{2/3} (2x+1)$

$$f'(x) = \frac{2}{3}(x-2)^{-1/3}(2x+1) + (x-2)^{2/3}(2)$$

$$f'(x) = 2 \times \frac{(2x+1) + (x-2)}{3(x-2)^{1/3}}$$

$$\frac{3x-1}{(x-2)^{1/3}} = 0$$

Critical points $x = \frac{1}{3}$ and x = 2

6. Let f(x) be a positive function such that the area bounded by y = f(x), y = 0 from x = 0 to x = a > 0is $e^{-a} + 4a^2 + a - 1$. Then the differential equation, whose general solution is $y = c_1 f(x) + c_2$, where c_1 and c₂ are arbitrary constants, is:

$$(1) (8e^x - 1) \frac{d^2y}{dx^2} + \frac{dy}{dx} = 0$$

(2)
$$(8e^x + 1)\frac{d^2y}{dx^2} - \frac{dy}{dx} = 0$$

(3)
$$(8e^x + 1)\frac{d^2y}{dx^2} + \frac{dy}{dx} = 0$$

$$(4) (8e^{x} - 1)\frac{d^{2}y}{dx^{2}} - \frac{dy}{dx} = 0$$

Ans. (3)

Sol.
$$\int_{0}^{a} f(x) dx = e^{-a} + 4a + a - 1$$

$$f(a) = -e^{-a} + 8a + 1$$

$$f(x) = -e^{-x} + 8x + 1$$

Now
$$y = C_1 f(x) + C_2$$

$$\frac{dy}{dx} = C_1 f'(x) = C_1 (e^{-x} + 8) \qquad \dots (1)$$

$$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} = -C_1 \mathrm{e}^{-x} \implies -\mathrm{e}^x \frac{\mathrm{d}^2 y}{\mathrm{d}x^2}$$

Put in equation (1)

$$\frac{\mathrm{d}y}{\mathrm{d}x} = -\mathrm{e}^x \, \frac{\mathrm{d}^2 y}{\mathrm{d}x^2} (\mathrm{e}^- + 8)$$

$$(8e^{x} + 1)\frac{d^{2}y}{dx^{2}} + \frac{dy}{dx} = 0$$

- 7. Let $f(x) = 4\cos^3 x + 3\sqrt{3}\cos^2 x 10$. The number of points of local maxima of f in interval $(0, 2\pi)$ is:
 - (1) 1

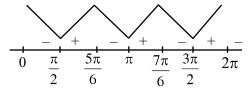
(2) 2

(3) 3

(4)4

Ans. (2)

Sol.
$$f(x) = 4\cos^3(x) + 3\sqrt{3}\cos^2(x) - 10$$
; $x \in (0, 2\pi)$
 $\Rightarrow f'(x) = 12\cos^2x[-\sin(x)] + 3\sqrt{3}(2\cos(x))[-\sin(x)]$
 $\Rightarrow f'(x) = -6\sin(x)\cos(x)[2\cos(x) + \sqrt{3}]$



local maxima at $x = \frac{5\pi}{6}, \frac{7\pi}{6}$

8. Let
$$A = \begin{bmatrix} 2 & a & 0 \\ 1 & 3 & 1 \\ 0 & 5 & b \end{bmatrix}$$
. If $A^3 = 4A^2 - A - 21I$, where

I is the identity matrix of order 3×3 , then 2a + 3b is equal to :

- (1) 10
- (2) 13
- (3) 9
- (4) -12

Ans. (2)

Sol.
$$A^3 - 4A^2 + A + 21 I = 0$$

 $tr(A) = 4 = 5 + 6 \implies b = -1$
 $|A| = -21$
 $-16 + a = -21 \implies a = -5$
 $2a + 3b = -13$

9. If the shortest distance between the lines

$$L_1 : \vec{r} = (2 + \lambda)\hat{i} + (1 - 3\lambda)\hat{j} + (3 + 4\lambda)\hat{k}, \ \lambda \in \mathbb{R}$$

$$L_2: \vec{r} = 2(1+\mu)\hat{i} + 3(1+\mu)\hat{j} + (5+\mu)\hat{k}, \, \mu \in \mathbb{R}$$

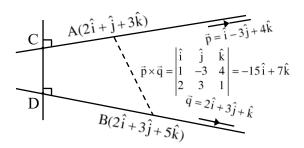
is $\frac{m}{\sqrt{n}}$, where gcd (m, n) = 1, then the value of

m + n equals.

- (1)384
- (2)387
- (3)377
- (4)390

Ans. (2)

Sol.



Shortes distance (CD) =
$$\begin{vmatrix} \overline{AB} \cdot \vec{p} \times \vec{q} \\ |\vec{p} \times \vec{q}| \end{vmatrix}$$
$$= \begin{vmatrix} (0\hat{i} + 2\hat{j} + 2\hat{k}) \cdot (-15\hat{i} + 7\hat{j} + 9\hat{k}) \\ \sqrt{355} \end{vmatrix}$$
$$= \frac{0 + 14 + 18}{\sqrt{355}} = \frac{32}{\sqrt{355}}$$

- m + n = 32 + 355 = 387
- 10. Let the sum of two positive integers be 24. If the probability, that their product is not less than $\frac{3}{4}$ times their greatest positive product, is $\frac{m}{n}$,

where gcd(m, n) = 1, then n - m equals:

(1)9

(2) 11

(3) 8

(4) 10

Ans. (4)

Sol.
$$x + y = 24, x, y \in N$$

$$AM > GM \implies xy \le 144$$

 $xy \ge 108$

Favorable pairs of (x, y) are

$$(13, 11), (12, 12), (14, 10), (15, 9), (16, 8),$$

(17, 7), (18, 6), (6, 18), (7, 17), (8, 16), (9, 15),

(10, 14), (11, 13)

i.e. 13 cases

Total choices for x + y = 24 is 23

Probability =
$$\frac{13}{23} = \frac{m}{n}$$

$$n - m = 10$$

If $\sin x = -\frac{3}{5}$, where $\pi < x < \frac{3\pi}{2}$,

then $80(\tan^2 x - \cos x)$ is equal to :

(1) 109

(2) 108

(3)18

(4) 19

Ans. (1)

Sol. $\sin x = \frac{-3}{5}, \pi < x < \frac{3\pi}{2}$

$$\tan x = \frac{3}{4} \cos x = -\frac{4}{5}$$

 $80(\tan^2 x - \cos x)$

$$=80\left(\frac{9}{16} + \frac{4}{5}\right) = 45 + 64 = 109$$

Let $I(x) = \int \frac{6}{\sin^2 x (1 - \cot x)^2} dx$. If I(0) = 3, then **12.**

$$I\left(\frac{\pi}{12}\right)$$
 is equal to :

(1) $\sqrt{3}$

(2) $3\sqrt{3}$

(3) $6\sqrt{3}$

Ans. (2)

Sol. $I(x) = \int \frac{6dx}{\sin^2 x (1 - \cot x)^2} = \frac{6 \cos ec^2 x dx}{(1 - \cot x)^2}$

Put $1 - \cot x = t$

 $\csc^2 x dx = dt$

$$I = \int \frac{6dt}{t^2} = \frac{-6}{t}$$
 c

$$I(x) = \frac{-6}{1 - \cot x} c, c = 3$$

$$I(x) = 3 - \frac{6}{1 - \cot x}, I\left(\frac{\pi}{12}\right) = -\frac{6}{1 - (2\sqrt{3})}$$

$$I\left(\frac{1}{12}\right) = 3 + \frac{6}{\sqrt{3} + 1} = 3 + \frac{6(\sqrt{3} - 1)}{2} = 3\sqrt{3}\sqrt{2}$$

The equations of two sides AB and AC of a 13. triangle ABC are 4x + y = 14 and 3x - 2y = 5, respectively. The point $\left(2, -\frac{4}{3}\right)$ divides the third side BC internally in the ratio 2:1. The equation of the side BC is:

$$(1) x - 6y - 10 = 0$$

(2) x - 3y - 6 = 0

(3)
$$x + 3y + 2 = 0$$
 (4) $x + 6y + 6 = 0$

Ans. (3)

Sol.

A
$$4x + y = 14$$

$$3x - 2y = 5$$
B $(x_1, 14 - 4x_1)$

$$P\left(2, -\frac{4}{3}\right)$$

$$C\left(x_2, \frac{3x_2 - 5}{2}\right)$$

$$\frac{2x_2 + x}{3} = 2, \frac{2\left(\frac{3x_2 - 5}{2} + (14 - 4x_1)\right)}{3} = \frac{-4}{3}$$

$$2x_2 + x_1 = 6$$
, $3x_2 - 4x_1 = -13$

$$x_2 = 1, x_1 = 4$$

So,
$$C(1, -1)$$
, $B(4, -2)$

$$m = \frac{-1}{3}$$

Equation of BC: $y + 1 = \frac{-1}{3}(x - 1)$

$$3y + 3 = -x + 1$$

$$x + 3y + 2 = 0$$

14. Let [t] be the greatest integer less than or equal to t. Let A be the set of all prime factors of 2310 and

$$f: A \to \mathbb{Z}$$
 be the function $f(x) = \frac{1}{1} \log_2 \left(x^2 + \left\lfloor \frac{x^3}{5} \right\rfloor \right)$.

The number of one-to-one functions from A to the range of f is :

Ans. (2)

Sol.
$$N = 2310 = 231 \times 10$$

$$= 3 \times 11 \times 7 \times 2 \times 5$$

$$A = \{2, 3, 5, 7, 11\}$$

$$f(x) = \left[\log_2\left(x^2 + \left[\frac{x^3}{5}\right]\right)\right]$$

$$f(2) = [log_2(5)] = 2$$

$$f(3) = [\log_2(14)] = 3$$

$$f(5) = [\log_2(25 + 25)] = 5$$

$$f(7) = [\log_2(117)] = 6$$

$$f(11) = [\log_2 387] = 8$$

Range of $f: B = \{2, 3, 5, 6, 8\}$

No. of one-one functions = 5! = 120

15. Let z be a complex number such that |z + 2| = 1and $\lim \left(\frac{z+1}{z+2} \right) = \frac{1}{5}$. Then the value of $\left| \text{Re} \left(\overline{z+2} \right) \right|$

is:

(1)
$$\frac{\sqrt{6}}{5}$$

(2)
$$\frac{1+\sqrt{}}{5}$$

(3)
$$\frac{24}{5}$$

(4)
$$\frac{2\sqrt{}}{5}$$

Sol.
$$|z+2|=1$$
, $Im\left(\frac{z+1}{z+2}\right)=\frac{1}{5}$

Let
$$z + 2 = \cos\theta + i\sin\theta$$

$$\frac{1}{z+2} = \cos\theta - i\sin\theta$$

$$\Rightarrow \frac{z+1}{z+2} = 1 - \frac{1}{z-2} = 1 - (\cos\theta - i\sin\theta)$$

$$=(1-\cos\theta)+i\sin\theta$$

$$\operatorname{Im}\left(\frac{z+1}{z+2}\right) = \sin\theta, \sin\theta = \frac{1}{5}$$

$$\cos\theta = \pm \sqrt{1 - \frac{1}{25}} = \pm \frac{2\sqrt{6}}{5}$$

$$\left| \operatorname{Re}(\overline{z+2}) \right| = \frac{2\sqrt{6}}{5}$$

16. If the set $R = \{(a, b) ; a + 5b = 42, a, b \in \mathbb{N} \}$

has m elements and $\sum_{n=1}^{m} (1+i^{n!}) = x + iy$, where

 $I = \sqrt{-1}$, then the value of m + x + y is:

Ans. (2)

Sol.
$$a + 5b = 42, a, b \in N$$

$$a = 42 - 5b$$
, $b = 1$, $a = 37$

$$b = 2, a = 32$$

$$b = 3, a = 27$$

:

$$b = 8, a = 2$$

R has "8" elements \Rightarrow m = 8

$$\sum_{n=1}^{8} (1 - i^{n!}) = x + iy$$

for
$$n \ge 4$$
, $i^{n!} = 1$

$$\Rightarrow$$
 $(1-i) + (1-i^{2!}) + (1-i^{3!})$

$$= 1 - I + 2 + 1 + 1$$

$$=5-I=x+iy$$

$$m + x + y = 8 + 5 - 1 = 12$$

- For the function $f(x) = (\cos x) x + 1$, $x \in \mathbb{R}$, between the following two statements
 - (S1) f(x) = 0 for only one value of x is $[0, \pi]$.
 - (S2) f(x) is decreasing in $\left|0, \frac{\pi}{2}\right|$ and increasing in

$$\left[\frac{\pi}{2},\pi\right].$$

- (1) Both (S1) and (S2) are correct
- (2) Only (S1) is correct
- (3) Both (S1) and (S2) are incorrect
- (4) Only (S2) is correct

Ans. (2)

Sol.
$$f(x) = \cos x - x + 1$$

$$f'(x) = -\sin x - 1$$

f is decreasing $\forall x \in R$

$$f(x) = 0$$

$$f(0) = 2$$
, $f(\pi) = -\pi$

f is strictly decreasing in $[0, \pi]$ and $f(0).f(\pi) < 0$

- \Rightarrow only one solution of f(x) = 0
- S1 is correct and S2 is incorrect.
- 18. The set of all α , for which the vector $\vec{a} = \alpha t \hat{i} + 6 \hat{j} - 3 \hat{k}$ and $\vec{b} = t \hat{i} - 2 \hat{j} - 2 \alpha t \hat{k}$ inclined at an obtuse angle for all $t \in \mathbb{R}$ is :

$$(2)(-2,0]$$

$$(3) \left(-\frac{4}{3}, 0\right) \qquad (4) \left(-\frac{4}{3}, 1\right)$$

$$(4)\left(-\frac{4}{3},1\right)$$

Ans. (3)

Sol.
$$\vec{a} = \alpha t \hat{i} + 6 \hat{j} - 3 \hat{k}$$

$$\vec{b} = t\hat{i} - 2\hat{j} - 2\alpha t\hat{k}$$

so
$$\vec{a}.\vec{b} < 0$$
, $\forall t \in R$

$$\alpha t^2 - 12 + 6\alpha t < 0$$

$$\alpha t^2 + 6\alpha t - 12 < 0, \forall t \in \mathbb{R}$$

$$\alpha$$
 < 0, and D < 0

$$36\alpha^2 + 48\alpha < 0$$

$$12\alpha(3\alpha+4)<0$$

$$\frac{-4}{3}$$
 < α < 0

also for a = 0, $\vec{a} \cdot \vec{b} < 0$

hence a
$$\alpha \in \left(\frac{-4}{3}, 0\right)$$

Let y = y(x) be the solution of the differential 19. equation $(1 + y^2)e^{\tan x}dx + \cos^2 x(1 + e^{2\tan x})dy = 0$, y(0) = 1. Then $y\left(\frac{\pi}{4}\right)$ is equal to :

$$(1) \frac{2}{e}$$

(2)
$$\frac{1}{e^2}$$

(3)
$$\frac{1}{e}$$

$$(4) \frac{2}{a^2}$$

Ans. (3)

Sol.
$$(1 + y^2) e^{\tan x} dx + \cos^2 x (1 + e^{2\tan x}) dy = 0$$

$$\int \frac{\sec^2 x \, e^{\tan x}}{1 + e^{2\tan x}} \, dx + \int \frac{dy}{1 - y^2} = C$$

$$\Rightarrow \tan^{-1}(e^{\tan x}) + \tan^{-1} y = C$$

for
$$x = 0$$
, $y = 1$, $tan^{-1}(1) + tan^{-1}1 = C$

$$C = \frac{\pi}{2}$$

$$\tan^{-1}(e^{\tan x}) + \tan^{-1} y = \frac{\pi}{2}$$

Put
$$x = \pi$$
, $tan^{-1} e + tan^{-1} y = \frac{\pi}{2}$

$$\tan^{-1} y = \cot^{-1} e$$

$$y = \frac{1}{e}$$

- Let H: $\frac{-x^2}{a^2}$ + 1 be the hyperbola, whose 20. eccentricity is $\sqrt{3}$ and the length of the latus rectum is $4\sqrt{3}$. Suppose the point $(\alpha, 6)$, $\alpha > 0$ lies on H. If β is the product of the focal distances of the point $(\alpha, 6)$, then $\alpha^2 + \beta$ is equal to :
 - (1) 170
- (2) 171
- (3) 169
- (4) 172

Ans. (2)

Sol. H:
$$\frac{y^2}{b^2} - \frac{x^2}{a^2} = 1$$
, $e = \sqrt{3}$

$$e = \sqrt{1 + \frac{a^2}{b^2}} = \sqrt{3} \quad \Rightarrow \frac{a^2}{b^2} = 2$$

$$a^2 = 2b^2$$

length of L.R. =
$$\frac{2a^2}{b} = 4\sqrt{3}$$

$$a = \sqrt{6}$$

$$P(\alpha, 6)$$
 lie on $\frac{y^2}{3} - \frac{x^2}{6} = 1$

$$12 - \frac{\alpha^2}{6} = 1 \Rightarrow \alpha^2 = 66$$

Foci =
$$(0, \pm be)$$
 = $(0, 3) & (0, -3)$

Let $d_1 \& d_2$ be focal distances of $P(\alpha, 6)$

$$d_1 = \sqrt{\alpha + (6 + be)^2}$$
, $d_2 = \sqrt{\alpha + (6 - be)^2}$

$$d_1 = \sqrt{66 + 81}$$
, $d_2 = \sqrt{66 + 9}$

$$\beta = d_1 d_2 = \sqrt{147 \times 75} = 105$$

$$\alpha^2 + \beta = 66 + 105 = 171$$

SECTION-B

21. Let $A = \begin{bmatrix} 2 & - \\ 1 & \end{bmatrix}$. If the sum of the diagonal elements of A^{13} is 3^n , then n is equal to _____.

Ans. (7)

Sol.
$$A = \begin{bmatrix} 2 & - \\ 1 & \end{bmatrix}$$

$$A^2 = \begin{bmatrix} 2 & -1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 2 & -1 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} 3 & -3 \\ 3 & 0 \end{bmatrix}$$

$$A^3 = \begin{bmatrix} 3 & -3 \\ 3 & 0 \end{bmatrix} \begin{bmatrix} 2 & -1 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} 3 & -6 \\ 6 & -3 \end{bmatrix}$$

$$A^{4} = \begin{vmatrix} 3 & -6 \\ 6 & -3 \end{vmatrix} \begin{vmatrix} 2 & -1 \\ 1 & 1 \end{vmatrix} = \begin{vmatrix} 0 & -9 \\ 9 & 9 \end{vmatrix}$$

$$A^5 = \begin{bmatrix} 0 & -9 \\ 9 & 9 \end{bmatrix} \begin{bmatrix} 2 & -1 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} -9 & -9 \\ 9 & -18 \end{bmatrix}$$

$$A^6 = \begin{bmatrix} -9 & -9 \\ 9 & 18 \end{bmatrix} \begin{bmatrix} 2 & -1 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} -27 & 0 \\ 0 & -27 \end{bmatrix}$$

$$A^{7} = \begin{bmatrix} -27 & -0 \\ 0 & -27 \end{bmatrix} \begin{bmatrix} -54 & 27 \\ -27 & -27 \end{bmatrix} = \begin{vmatrix} 3^{6} \times 2 & -27^{2} \\ 27^{2} & 3^{6} \end{vmatrix}$$

$$3^7 = 3^n \implies n = 7$$

22. If the orthocentre of the triangle formed by the lines 2x + 3y - 1 = 0, x + 2y - 1 = 0 and ax + by - 1 = 0, is the centroid of another triangle, whose circumecentre and orthocentre respectively are (3, 4) and (-6, -8), then the value of |a - b| is

Ans. (16)

Sol.
$$2x + 3y - 1 = 0$$

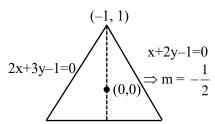
$$x + 2y - 1 = 0$$

$$ax + by - 1 = 0$$

$$\begin{array}{c|cccc}
 & 2 & 1 \\
 \hline
 & G & 0(3, 4) \\
 & H & (6, 6) & 0
\end{array}$$

$$\left(\frac{6-6}{3},\frac{8-8}{3}\right)$$

$$=(0,0)$$



$$ax + by - 1 = 0$$

$$\left(\frac{1-0}{-1-0}\right)\left(\frac{-a}{b}\right) = -1$$

$$\Rightarrow$$
 $-a = b$

$$\Rightarrow$$
 ax - ay - 1 = 0

$$ax - a\left(1 - \frac{2x}{3}\right)$$

$$x\left(a+\frac{2a}{3}\right) \quad \frac{a}{3}$$

$$x = \frac{a+3}{5a}$$

$$2\left(\frac{a+3}{5a}\right) + 3y - 1 = 0$$

$$y = \frac{1 - \frac{2a + 6}{5a}}{3} \quad \frac{3a - 6}{3 \times 5a}$$

$$y = \frac{a-2}{5a}$$

$$\frac{\left(\frac{a-2}{5a}\right)}{\left(\frac{a+3}{5a}\right)} = 2 \implies a-2 = 2a+6$$

$$a = -8$$

$$b = 8$$

$$-8x + 8y - 1 = 0$$

$$|a - b| = 16$$

23. Three balls are drawn at random from a bag containing 5 blue and 4 yellow balls. Let the random variables X and Y respectively denote the number of blue and Yellow balls. If \overline{X} and \overline{Y} are the means of X and Y respectively, then $7\overline{X} + 4\overline{Y}$ is equal to _____.

Sol.

Blue balls	0	1	2	3	4	5
Pr ob.	$\frac{{}^{5}\text{C}_{0} .{}^{4}\text{C}_{1}}{{}^{9}\text{C}_{3}}$	$\frac{{}^{5}C_{1} \cdot {}^{4}C_{2}}{{}^{9}C_{3}}$	$\frac{{}^{5}C_{2} {}^{4}C_{1}}{{}^{9}C_{3}}$	⁵ C ₃ . ⁴ C ₀ ⁹ C ₃	0	0

$$7\overline{x} = \frac{{}^{5}C_{1}{}^{4}C_{2} + {}^{5}C_{2} \cdot {}^{4}C_{1} \times 2 + {}^{5}C_{3} \cdot {}^{4}C_{0} \times 3}{{}^{9}C_{3}} \times 7$$

$$\frac{30+80+30}{84} \times 7$$

$$=\frac{140}{12}=\frac{70}{6}=\frac{35}{3}$$

yellow	0	1	2	3	4
		${}^{5}C_{2}{}^{4}C_{1}$	${}^{5}C_{1}{}^{4}C_{2}$	${}^{5}C_{0}^{4}C_{3}$	0

$$4\overline{y} = \frac{40+60}{84} \times 4 = \frac{112}{21} = \frac{16}{3}$$

24. The number of 3-digit numbers, formed using the digits 2, 3, 4, 5 and 7, when the repetition of digits is not allowed, and which are not divisible by 3, is equal to _____.

Ans. (36)

Sol. 2, 3, 4, 5, 7

total number of three digit numbers not divisible by 3 will be formed by using the digits

(4, 5, 7)

(3, 4, 7)

(2, 5, 7)

(2, 4, 7)

(2, 4, 5)

(2, 3, 5)

number of ways = $6 \times 3! = 36$

25. Let the positive integers be written in the form :

If the k^{th} row contains exactly k numbers for every natural number k, then the row in which the number 5310 will be, is

Ans. (103)

$$\begin{aligned} &\textbf{Sol.} \quad S = 1 + 2 + 4 + 7 + \ldots + T_n \\ &S = 1 + 2 + 4 + \ldots \\ &Tn = 1 + 1 + 2 + 3 + \ldots + (T_n - T_{n-1}) \end{aligned}$$

$$&T_n = 1 + \left(\frac{n-1}{2}\right) [2 + (n-2) \times 1]$$

$$&T_n = 1 + 1 + \frac{n(n-1)}{2}$$

$$&n = 100 \qquad T_n = 1 + \frac{100 \times 99}{2} = 4950 + 1$$

$$&n = 101 \qquad T_n = 1 + \frac{101 \times 100}{2} = 5050 + 1 = 5051$$

$$&n = 102 \qquad T_n = 1 + \frac{102 \times 101}{2} = 5151 + 1 = 5152$$

$$&n = 103 \qquad T_n = 1 + \frac{103 \times 102}{2} = 5254$$

$$&n = 104 \qquad T_n = 1 + \frac{104 \times 103}{2} = 5357$$

26. If the range of $f(\theta) = \frac{\sin^4 \theta + 3\cos \theta}{\sin^4 \theta + \cos \theta}$, $\theta \in \mathbb{R}$ is $[\alpha, \beta]$, then the sum of the infinite G.P., whose first term is 64 and the common ratio is $\frac{\alpha}{\beta}$, is equal to

Sol.
$$f(\theta) = \frac{\sin^4 \theta + 3\cos^2 \theta}{\sin^4 \theta + \cos^2 \theta}$$

 $f(\theta) = 1 + \frac{2\cos^2 \theta}{\sin^4 \theta + \cos \theta}$
 $f(\theta) = \frac{2\cos^2 \theta}{\cos^4 \theta - \cos^2 \theta + 1} + 1$
 $f(\theta) = \frac{2}{\cos^2 \theta + \sec^2 \theta - 1} + 1$
 $f(\theta)|_{min.} = 1$
 $f(\theta)|_{max.} = 3$
 $S = \frac{64}{1 - 1/3} = 96$
27. Let $\alpha = \sum_{r=0}^{n} (4r^2 + 2r + 1)^n C_r$
and $\beta = \left(\sum_{r=0}^{n} \frac{^n C_r}{r + 1}\right) + \frac{1}{n + 1}$. If $140 < \frac{2\alpha}{\beta} < 281$, then the value of n is _____.
Ans. (5)
Sol. $\alpha = \sum_{r=0}^{n} (4r^2 + 2r + 1)$. C_r
 $\alpha = 4\sum_{r=0}^{n} r^2 \cdot - \cdot^{n-1} C_{r-1} + 2\sum_{r=0}^{n} r \cdot \frac{n}{r} \cdot \frac{n}{r} \cdot C_r + \sum_{r=0}^{n} n \cdot C_r$
 $+4n\sum_{r=0}^{n} (4r^2 + 2r + 1) \cdot C_r$
 $\alpha = 4n(n - 1) \cdot 2^{n-2} + 4n \cdot 2^{n-1} + 2n \cdot 2^{n-1} + 2^n \cdot \alpha = 2^{n-2}[4n(n-1) + 8n + 4n + 4]$
 $\alpha = 2^{n-2}[4n^2 + 8n + 4]$
 $\alpha = 2n(n + 1)^2$
 $\beta = \sum_{r=0}^{n} \frac{^n C_r}{r+1} + \frac{1}{n+1}$
 $= \sum_{r=0}^{n} \frac{^n C_r}{n+1} \cdot \frac{1}{n+1}$
 $= \sum_{r=0}^{n} \frac{^n C_r}{n+1} \cdot \frac{1}{n+1}$
 $= \frac{1}{n+1} (1 + \frac{^{n+1}}{n+1} \cdot C_1 + \dots + \frac{^{n-1}}{n+1} \cdot C_{n+1})$
 $= \frac{2^{n+1}}{n+1}$
 $\frac{2\alpha}{\beta} = \frac{2^{n+1}(n-1)^2}{2^{n+1}} \cdot (n+1) = (n+1)^3$
 $140 < (n+1)^3 < 281$
 $n = 4 \Rightarrow (n+1)^3 = 125$
 $n = 5 \Rightarrow (n+1)^3 = 216$

 $n = 6 \Rightarrow (n+1)^3 = 343$

 \therefore n = 5

 $\vec{a} = 9\hat{i} - 13\hat{j} + 25\hat{k}, \ \vec{b} = 3\hat{i} + 7\hat{j} - 13\hat{k}$ $\vec{c} = 17\hat{i} - 2\hat{j} + \hat{k}$ be three given vectros. If \vec{r} is a vector such that $\vec{r} \times \vec{a} = (\vec{b} + \vec{c}) \times \vec{a}$ and $\vec{r} \cdot (\vec{b} - \vec{c}) = 0$, then $\frac{|593\vec{r} + 67\vec{a}|^2}{(593)^2}$ is equal to _____.

Ans. (569)

Sol.
$$\vec{a} = 9\hat{i} - 13\hat{j} + 25\hat{k}$$

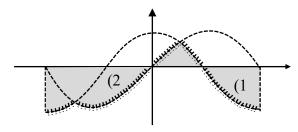
 $\vec{b} = 3\hat{i} + 7\hat{j} - 13\hat{k}$
 $\vec{c} = 17\hat{i} - 2\hat{j} + \hat{k}$
 $\vec{b} + \vec{c} = 20\hat{i} + 5\hat{j} - 12\hat{k}$
 $\vec{b} - \vec{c} = -14\hat{i} + 9\hat{j} - 14\hat{k}$
 $(\vec{r} - (\vec{b} + \vec{c})) \times \vec{a} = 0$
 $\vec{r} - (\vec{b} + \vec{c}) = \lambda \vec{a}$
 $\vec{r} = \lambda \vec{a} + \vec{b} + \vec{c}$
But $\vec{r} \cdot (\vec{b} - \vec{c}) = 0$
 $\Rightarrow (\lambda \vec{a} + \vec{b} + \vec{c}) \cdot (\vec{b} - \vec{c}) = 0$
 $\Rightarrow (\lambda \vec{a} + \vec{b} + \vec{c}) \cdot (\vec{b} - \vec{c}) = 0$
 $\Rightarrow \lambda \vec{a} \cdot \vec{b} + \vec{b} \cdot \vec{b} + \vec{c} \cdot \vec{b} - \lambda \vec{a} \cdot \vec{c} - \vec{b} \cdot \vec{c} - \vec{c} \cdot \vec{c} = 0$
 $\lambda = \frac{\vec{c} \cdot \vec{c} - \vec{b} \cdot \vec{b}}{\vec{a} \cdot \vec{b} - \vec{a} \cdot \vec{c}} = \frac{294 - 227}{-389 + 204} = \frac{-67}{593}$
 $\therefore \vec{r} = \vec{b} + \vec{c} - \frac{67}{593} \vec{a}$
 $\Rightarrow 593\vec{r} + 67\vec{a} = 593(\vec{b} + \vec{c})$
 $\Rightarrow |\vec{b} + \vec{c}|^2 = 569$

Let the area of the region enclosed by the curve 29. $y = min\{sinx, cosx\}$ and the x-axis between $x = -\pi$ to $x = \pi$ be A. Then A^2 is equal to .

Ans. (16)

Sol.
$$y = min\{sinx, cosx\}$$

 $x-axis$ $x-\pi$ $x=\pi$



$$\int_{0}^{\pi/4} \sin x = (\cos x)_{\pi/4}^{0} = 1 - \frac{1}{\sqrt{2}}$$

$$\int_{-\pi}^{-3\pi/4} (\sin x - \cos x) = (-\cos x - \sin x)_{-\pi}^{3\pi/4}$$

$$= (\cos x + \sin x)_{3\pi/4}^{-\pi}$$

$$= (-1+0) - \left(-\frac{1}{\sqrt{2}} - \frac{1}{\sqrt{2}} \right)$$

$$= -1 + \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}}$$

$$\int_{\pi/4}^{\pi/2} \cos x dx = (\sin x)_{\pi/4}^{\pi/2} = 1 - \frac{1}{\sqrt{2}}$$

$$A = 4$$

$$A^{2} = 16$$

30. The value of

$$\lim_{x\to 0} 2 \left(\frac{1 - \cos x \sqrt{\cos 2x} \sqrt[3]{\cos 3x} \dots \sqrt[10]{\cos 10x}}{x^2} \right) \text{ is }$$

Ans. (55)

Sol.

$$\lim_{x \to 0} 2 \left(\frac{1 - \left(1 - \frac{x^2}{2!}\right) \left(1 - \frac{4x^2}{2!}\right) \left(1 - \frac{9x^2}{2!}\right) \dots \left(1 - \frac{100x^2}{2!}\right)}{x^2} \right)$$

By expansion

$$\lim_{x \to 0} \frac{2 \cdot 1 - \left(1 - \frac{x^2}{2}\right) \left(1 - \frac{1}{2} \cdot \frac{4x^2}{2}\right) \left(1 - \frac{1}{3} \cdot \frac{9x^2}{2}\right) \dots \left(1 - \frac{1}{10} \cdot \frac{100x^2}{2}\right)}{x^2}$$

$$\left(1 - \left(1 - \frac{x^2}{2}\right) \left(1 - \frac{2x^2}{2}\right) \left(1 - \frac{3x^2}{2}\right) \dots \left(1 - \frac{10x^2}{2}\right)$$

$$\lim_{x \to 0} 2 \left(\frac{1 - \left(1 - \frac{x^2}{2}\right) \left(1 - \frac{2x^2}{2}\right) \left(1 - \frac{3x^2}{2}\right) \dots \left(1 - \frac{10x^2}{2}\right)}{x^2} \right)$$

$$\frac{2 \cdot 1 - 1 + x^{2} \left(\frac{1}{2} + \frac{2}{2} + \frac{3}{2} + \dots + \frac{10}{2}\right)}{x^{2}}$$

$$2\left(\frac{1}{2} + \frac{2}{2} + \frac{3}{2} + \dots + \frac{10}{2}\right)$$

$$1 + 2 + \dots + 10 = \frac{10 \times 11}{2} = 55$$

(Held On Monday 08th April, 2024)

TIME: 9:00 AM to 12:00 NOON

PHYSICS

SECTION-A

- **31.** Three bodies A, B and C have equal kinetic energies and their masses are 400 g, 1.2 kg and 1.6 kg respectively. The ratio of their linear momenta is :
 - (1) 1: $\sqrt{3}$: 2
- (2) $1:\sqrt{3}:\sqrt{2}$
- (3) $\sqrt{2}:\sqrt{3}:1$
- (4) $\sqrt{3}:\sqrt{2}:1$

Ans. (1)

Sol. KE =
$$\frac{P^2}{2m}$$

$$P \propto \sqrt{m}$$

Hence, $P_A: P_B: P_C$

$$=\sqrt{400}:\sqrt{1200}:\sqrt{1600}=1:\sqrt{3}:2$$

- 32. Average force exerted on a non-reflecting surface at normal incidence is 2.4×10^{-4} N. If 360 W/cm² is the light energy flux during span of 1 hour 30 minutes. Then the area of the surface is:
 - $(1) 0.2 \text{ m}^2$
- $(2) 0.02 \text{ m}^2$
- $(3) 20 \text{ m}^2$
- $(4) 0.1 \text{ m}^2$

Ans. (2)

Sol. Pressure =
$$\frac{I}{C} = \frac{F}{A}$$

$$\Rightarrow \frac{360}{10^{-4} \times 3 \times 10^8} = \frac{2.4 \times 10^{-4}}{A}$$

$$\Rightarrow$$
 A = 2 × 10⁻² m² = 0.02 m²

33. A proton and an electron are associated with same de-Broglie wavelength. The ratio of their kinetic energies is:

(Assume h = $6.63 \times 10^{-34} \text{ J s}, m_e = 9.0 \times 10^{-31} \text{ kg}$ and $m_p = 1836 \text{ times } m_e$)

- (1) 1 : 1836
- (2) 1: $\frac{1}{1836}$
- (3) 1: $\frac{1}{\sqrt{1836}}$
- (4) $1:\sqrt{1836}$

TEST PAPER WITH SOLUTION

Ans. (1)

Sol. λ is same for both

$$P = \frac{h}{\lambda}$$
 same for both

$$P = \sqrt{2mK}$$

Hence,

$$K \propto \frac{1}{m}$$

$$\Rightarrow \frac{\mathrm{KE}_{\mathrm{p}}}{\mathrm{KE}_{\mathrm{e}}} = \frac{\mathrm{m}_{\mathrm{e}}}{\mathrm{m}_{\mathrm{p}}} = \frac{1}{1836}$$

- **34.** A mixture of one mole of monoatomic gas and one mole of a diatomic gas (rigid) are kept at room temperature (27°C). The ratio of specific heat of gases at constant volume respectively is:
 - (1) $\frac{7}{5}$

(2) $\frac{3}{2}$

 $(3) \frac{3}{5}$

 $(4) \frac{5}{3}$

Ans. (3)

Sol.
$$\frac{(C_v)_{mono}}{(C_v)_{dia}} = \frac{\frac{3}{2}R}{\frac{5}{2}R} = \frac{3}{5}$$

- **35.** In an expression $a \times 10^b$:
 - (1) a is order of magnitude for $b \le 5$
 - (2) b is order of magnitude for $a \le 5$
 - (3) b is order of magnitude for $5 < a \le 10$
 - (4) b is order of magnitude for $a \ge 5$

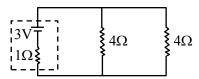
Ans. (2)

Sol. $a \times 10^b$

if $a \le 5$ order is b

a > 5 order is b + 1

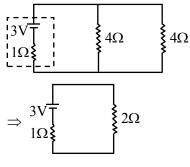
36. In the given circuit, the terminal potential difference of the cell is:



- (1) 2 V
- (2) 4 V
- (3) 1.5 V
- (4) 3 V

Ans. (1)

Sol.



$$i = \frac{3}{1+2} = 1A$$

$$v = E - ir$$

$$= 3 - 1 \times 1 = 2V$$

- 37. Binding energy of a certain nucleus is 18×10^8 J. How much is the difference between total mass of all the nucleons and nuclear mass of the given nucleus:
 - $(1) 0.2 \mu g$
- $(2) 20 \mu g$
- $(3) 2 \mu g$
- $(4)\ 10\ \mu g$

Ans. (2)

Sol.
$$\Delta mc^2 = 18 \times 10^8$$

$$\Delta m \times 9 \times 10^{16} = 18 \times 10^{8}$$

$$\Delta m = 2 \times 10^{-8} \, \text{kg} = 20 \, \mu \text{g}$$

- **38.** Paramagnetic substances:
 - A. align themselves along the directions of external magnetic field.
 - B. attract strongly towards external magnetic field.
 - C. has susceptibility little more than zero.
 - D. move from a region of strong magnetic field to weak magnetic field.

Choose the **most appropriate** answer from the options given below:

- (1) A, B, C, D
- (2) B, D Only
- (3) A, B, C Only
- (4) A, C Only

Ans. (4)

Sol. A, C only

- 39. A clock has 75 cm, 60 cm long second hand and minute hand respectively. In 30 minutes duration the tip of second hand will travel x distance more than the tip of minute hand. The value of x in meter is nearly (Take $\pi = 3.14$):
 - (1) 139.4
- (2) 140.5
- (3)220.0
- (4) 118.9

Ans. (1)

Sol.
$$x_{min} = \pi \times r_{min}$$

$$= \pi \times \frac{60}{100} \text{m}.$$

$$x_{\text{second}} = 30 \times 2\pi \times r_{\text{second}}$$

$$=30\times2\pi\times\frac{75}{100}$$

$$X = X_{second} - X_{min}$$

$$= 139.4 \text{ m}$$

40. Young's modulus is determined by the equation given by $Y = 49000 \frac{m}{\ell} \frac{dyne}{cm^2}$ where M is the mass

and ℓ is the extension of wire used in the experiment. Now error in Young modules(Y) is estimated by taking data from M- ℓ plot in graph paper. The smallest scale divisions are 5 g and 0.02 cm along load axis and extension axis respectively. If the value of M and ℓ are 500 g and 2 cm respectively then percentage error of Y is:

- (1) 0.2 %
- (2) 0.02 %
- (3) 2 %
- (4) 0.5 %

Ans. (3)

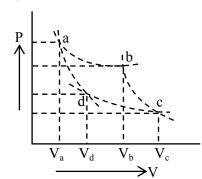
Sol.
$$\frac{\Delta Y}{Y} = \frac{\Delta m}{m} + \frac{\Delta \ell}{\ell}$$

= $\frac{5}{500} + \frac{0.02}{2} = 0.01 + 0.01$

$$\frac{\Delta Y}{Y} = 0.02 \implies \% \frac{\Delta Y}{Y} = 2\%$$

Two different adiabatic paths for the same gas intersect two isothermal curves as shown in P-V diagram. The relation between the ratio $\frac{V_a}{V}$ and the

ratio
$$\frac{V_b}{V_c}$$
 is:



$$(1) \frac{V_a}{V_d} = \left(\frac{V_b}{V_c}\right)^{-1}$$

$$(2) \ \frac{V_a}{V_d} \neq \frac{V_b}{V_c}$$

$$(3) \frac{V_a}{V_d} = \frac{V_b}{V_c}$$

$$(3) \frac{V_a}{V_d} = \frac{V_b}{V_c} \qquad (4) \frac{V_a}{V_d} = \left(\frac{V_b}{V_c}\right)^2$$

Ans. (3)

Sol. For adiabatic process

$$TV^{\gamma-1} = constant$$

$$T_a \cdot V_a^{\gamma-1} = T_d \cdot V_d^{\gamma-1}$$

$$\left(\frac{V_a}{V_d}\right)^{\gamma-1} = \frac{T_d}{T_a}$$

$$T_{b} \cdot V_{b}^{\gamma - 1} = T_{c} \cdot V_{c}^{\gamma - 1}$$

$$\left(\frac{V_b}{V_c}\right)^{\gamma-1} = \frac{T_c}{T_b}$$

$$\frac{V_a}{V_d} = \frac{V_b}{V_c} \qquad \left(\begin{array}{c} \because T_d = T_c \\ T_a = T_b \end{array} \right)$$

42. Two planets A and B having masses m₁ and m₂ move around the sun in circular orbits of r₁ and r₂ radii respectively. If angular momentum of A is L and that of B is 3L, the ratio of time period $\left(\frac{T_A}{T_-}\right)$ is:

$$(1)\left(\frac{\mathbf{r}_2}{\mathbf{r}_1}\right)^{\frac{3}{2}}$$

$$(2) \left(\frac{\mathbf{r}_1}{\mathbf{r}_2}\right)^3$$

(3)
$$\frac{1}{27} \left(\frac{m_2}{m_1} \right)^3$$

(4)
$$27 \left(\frac{m_1}{m_2}\right)^3$$

Ans. (3)

Sol.
$$\frac{\pi r_1^2}{T_A} = \frac{L}{2m_1}$$
(1)

$$\frac{\pi r_2^2}{T_B} = \frac{3L}{2m_2} \quad(2)$$

$$\Rightarrow \frac{T_A}{T_B} = 3. \frac{m_1}{m_2} \cdot \left(\frac{r_1}{r_2}\right)^2$$

$$\left(\frac{T_{A}}{T_{B}}\right)^{2} = \left(\frac{r_{l}}{r_{2}}\right)^{3} \Longrightarrow \left(\frac{r_{l}}{r_{2}}\right)^{2} = \left(\frac{T_{A}}{T_{B}}\right)^{\frac{4}{3}}$$

$$\Rightarrow \frac{1}{27} \cdot \left(\frac{m_2}{m_1}\right)^3 = \left(\frac{T_A}{T_B}\right)$$

- A LCR circuit is at resonance for a capacitor C, 43. inductance L and resistance R. Now the value of resistance is halved keeping all other parameters same. The current amplitude at resonance will be now:
 - (1) Zero
- (2) double
- (3) same
- (4) halved

Ans. (2)

Sol. In resonance Z = R

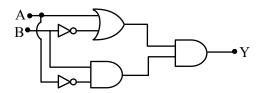
$$I = \frac{V}{R}$$

 $R \rightarrow halved$

$$\Rightarrow I \rightarrow 2I$$

I becomes doubled.

44. The output Y of following circuit for given inputs is:



- (1) $A \cdot B(A + B)$
- (2) A B

(3)0

(4) •B

Ans. (3)

Sol. By truth table

A	В	Y
0	0	0
0	1	0
1	0	0
1	1	0

- **45.** Two charged conducting spheres of radii a and b are connected to each other by a conducting wire. The ratio of charges of the two spheres respectively is:
 - (1) \sqrt{ab}
- (2) ab

 $(3) \frac{a}{b}$

(4) $\frac{b}{a}$

Ans. (3)

Sol. Potential at surface will be same

$$\frac{Kq_1}{a} = \frac{Kq_2}{b}$$

$$\frac{q_1}{q_2} = \frac{a}{b}$$

- **46.** Correct Bernoulli's equation is (symbols have their usual meaning):
 - (1) P + mgh + $\frac{1}{2}$ mv² = constant
 - (2) $P + \rho gh + \frac{1}{2}\rho v^2 = constant$
 - (3) $P + \rho gh + \rho v^2 = constant$
 - (4) P + $\frac{1}{2} \rho gh + \frac{1}{2} \rho v^2 = constant$

Ans. (2)

Sol. $P + \rho gh + \frac{1}{2}\rho V^2 = constant$

- 47. A player caught a cricket ball of mass 150 g moving at a speed of 20 m/s. If the catching process is completed in 0.1 s, the magnitude of force exerted by the ball on the hand of the player is:
 - (1) 150 N
- (2) 3 N
- (3) 30 N
- (4) 300 N

Ans. (3)

Sol.
$$F = \frac{\Delta P}{\Delta t} = \frac{mv - 0}{0.1}$$

$$= \frac{150 \times 10^{-3} \times 20}{0.1} = 30 \,\mathrm{N}$$

- **48.** A stationary particle breaks into two parts of masses m_A and m_B which move with velocities v_A and v_B respectively. The ratio of their kinetic energies $(K_B:K_A)$ is:
 - $(1) v_B : v_A$
- (2) $m_B : m_A$
- $(3) m_B v_B : m_A v_A$
- (4) 1:1

Ans. (1)

Sol. Initial momentum is zero.

Hence
$$|P_A| = |P_B|$$

$$\Rightarrow$$
 $m_A v_B = m_B V_B$

$$\frac{(KE)_{A}}{(KE)_{B}} = \frac{\frac{1}{2}m_{A}v_{A}^{2}}{\frac{1}{2}m_{B}v_{B}^{2}} = \frac{v_{A}}{v_{B}}$$

$$\frac{(KE)_{B}}{(KE)_{A}} = \frac{v_{B}}{v_{A}}$$

- **49.** Critical angle of incidence for a pair of optical media is 45°. The refractive indices of first and second media are in the ratio:
 - (1) $\sqrt{2}$:1
- (2) 1 : 2
- (3) $1:\sqrt{2}$
- (4) 2:1

Ans. (1)

Sol.
$$\sin\theta_c = \frac{\mu_R}{\mu_d} = \frac{\mu_2}{\mu_1}$$

$$\sin 45^\circ = \frac{\mu_2}{\mu_1}$$

$$\Rightarrow \frac{1}{\sqrt{2}} = \frac{\mu_2}{\mu_1}$$

$$\Rightarrow \frac{\mu_1}{\mu_2} = \frac{\sqrt{2}}{1}$$

50. The diameter of a sphere is measured using a vernier caliper whose 9 divisions of main scale are equal to 10 divisions of vernier scale. The shortest division on the main scale is equal to 1 mm. The main scale reading is 2 cm and second division of vernier scale coincides with a division on main scale. If mass of the sphere is 8.635 g, the density of the sphere is:

$$(1) 2.5 \text{ g/cm}^3$$

$$(2) 1.7 \text{ g/cm}^3$$

$$(3) 2.2 \text{ g/cm}^3$$

$$(4) 2.0 \text{ g/cm}^3$$

Ans. (4)

Sol. Given
$$9MSD = 10VSD$$

$$mass = 8.635 g$$

$$LC = 1 MSD - 1 VSD$$

$$LC = 1 MSD - \frac{9}{10} MSD$$

$$LC = \frac{1}{10}MSD$$

$$LC = 0.01 \text{ cm}$$

Reading of diameter = $MSR + LC \times VSR$

=
$$2 \text{ cm} + (0.01) \times (2)$$

= 2.02 cm

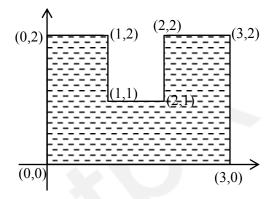
Volume of sphere =
$$\frac{4}{3}\pi \left(\frac{d}{2}\right)^3 = \frac{4}{3}\pi \left(\frac{2.02}{2}\right)^3$$

$$= 4.32 \text{ cm}^3$$

Density =
$$\frac{\text{mass}}{\text{volume}} = \frac{8.635}{4.32} = 1.998 \sim 2.00 \,\text{g}$$

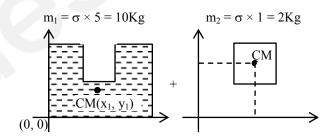
SECTION-B

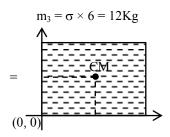
51. A uniform thin metal plate of mass 10 kg with dimensions is shown. The ratio of x and y coordinates of center of mass of plate in $\frac{n}{9}$. The value of n is



Ans. (15)

Sol.
$$m_1 = \sigma \times 5 = 10 \text{ Kg}$$





$$\Rightarrow m_1 x_1 + m_2 x_2 = m_3 x_3$$

$$10x_1 + 2(1.5) = 12(1.5) \Rightarrow x_1 = 1.5 \text{ cm}$$

$$\Rightarrow m_1 y_1 + m_2 y_2 = m_3 y_3$$

$$10y_1 + 2(1.5) = 12 \times 1 \Rightarrow y_1 = 0.9 \text{ cm}$$

$$\frac{x_1}{y_1} = \frac{1.5}{0.9} = \frac{15}{9}$$

$$n = 15$$

52. An electron with kinetic energy 5 eV enters a region of uniform magnetic field of 3 μT perpendicular to its direction. An electric field E is applied perpendicular to the direction of velocity and magnetic field. The value of E, so that electron moves along the same path, is ______ NC⁻¹.

(Given, mass of electron = 9×10^{-31} kg, electric charge = 1.6×10^{-19} C)

Sol. For the given condition of moving undeflected, net force should be zero.

$$qE = qVB$$

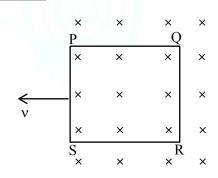
$$E = VB$$

$$= \sqrt{\frac{2 \times KE}{m}} \times B$$

$$= \sqrt{\frac{2 \times 5 \times 1.6 \times 10^{-19}}{9 \times 10^{-31}}} \times 3 \times 10^{-6}$$

$$= 4 \text{ N/C}$$

53. A square loop PQRS having 10 turns, area 3.6×10^{-3} m² and resistance 100 Ω is slowly and uniformly being pulled out of a uniform magnetic field of magnitude B = 0.5 T as shown. Work done in pulling the loop out of the field in 1.0 s is $\times 10^{-6}$ J.



Sol.
$$\in = NB\ell v$$

$$i = \frac{\epsilon}{R} = \frac{NB\ell v}{R}$$

$$F = N(i\ell B) = \frac{N^2 B^2 \ell^2 v}{R}$$

$$W = F \times \ell = \frac{N^2 B^2 \ell^3}{R} \left(\frac{\ell}{t}\right)$$

$$A = \ell^2$$

$$W = \frac{(10 \times 10)(0.5)^2 \times (3.6 \times 10^{-3})^2}{100 \times 1}$$

$$W = 3.24 \times 10^{-6} \text{ J}$$

54. Resistance of a wire at 0 °C, 100 °C and t °C is found to be 10Ω , 10.2Ω and 10.95Ω respectively. The temperature t in Kelvin scale is

Ans. (748)

Sol.
$$R = R_0(1 + \alpha \Delta T)$$

$$\frac{\Delta R}{R_0} = \alpha \Delta T$$

Case-I

$$0 \, ^{\circ}\text{C} \rightarrow 100 \, ^{\circ}\text{C}$$

$$\frac{10.2 - 10}{10} = \alpha(100 - 0) \qquad \dots (1)$$

Case-II

$$0 \, {}^{\circ}\text{C} \rightarrow t \, {}^{\circ}\text{C}$$

$$\frac{10.95 - 10}{10} = \alpha(t - 0) \qquad \dots (2)$$

$$\Rightarrow \frac{t}{100} = \frac{0.95}{0.2} = 475$$
°C

$$t = 475 + 273 = 748 \text{ K}$$

55. An electric field, $\vec{E} = \frac{2\hat{i} + 6\hat{j} + 8\hat{k}}{\sqrt{6}}$ passes through the surface of 4 m² area having unit vector $\hat{n} = \left(\frac{2\hat{i} + \hat{j} + \hat{k}}{\sqrt{6}}\right)$. The electric flux for that surface is ______ V m.

Sol.
$$\phi = \vec{E} \cdot \vec{A}$$

$$= \left(\frac{2\hat{\mathbf{i}} + 6\hat{\mathbf{j}} + 8\hat{\mathbf{k}}}{\sqrt{6}}\right) \cdot 4\left(\frac{2\hat{\mathbf{i}} + \hat{\mathbf{j}} + \hat{\mathbf{k}}}{\sqrt{6}}\right)$$

$$=\frac{4}{6}\times(4+6+8)=12\,\mathrm{Vm}$$

56. A liquid column of height 0.04 cm balances excess pressure of soap bubble of certain radius. If density of liquid is 8×10^3 kg m⁻³ and surface tension of soap solution is 0.28 Nm⁻¹, then diameter of the soap bubble is _____ cm.

$$(if g = 10 ms^{-2})$$

Ans. (7)

Sol.
$$\rho gh = \frac{4S}{R}$$
$$\Rightarrow R = \frac{4 \times 0.28}{8 \times 10^{3} \times 10 \times 4 \times 10^{-4}}$$
$$\Rightarrow \frac{0.28}{8} m = \frac{28}{8} cm$$

$$\Rightarrow$$
 R = 3.5 cm

Diameter = 7 cm

57. A closed and an open organ pipe have same lengths. If the ratio of frequencies of their seventh overtones is $\left(\frac{a-1}{a}\right)$ then the value of a is _____.

Ans. (16)

Sol. For closed organ pipe

$$f_c = (2n+1)\frac{v}{4\ell} = \frac{15v}{4\ell}$$

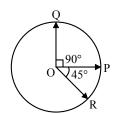
For open organ pipe

$$f_o = (n+1)\frac{v}{2\ell} = \frac{8v}{2\ell}$$

$$\frac{f_{c}}{f_{o}} = \frac{15}{16} = \frac{a-1}{a}$$

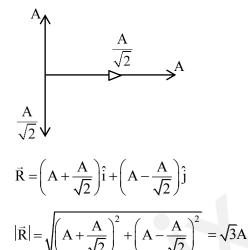
$$\Rightarrow$$
 a = 16

58. Three vectors \overrightarrow{OP} , \overrightarrow{OQ} and \overrightarrow{OR} each of magnitude A are acting as shown in figure. The resultant of the three vectors is $A\sqrt{x}$. The value of x is



Ans. (3)

Sol.



59. A parallel beam of monochromatic light of wavelength 600 nm passes through single slit of 0.4 mm width. Angular divergence corresponding to second order minima would be $\times 10^{-3}$ rad.

Ans. (6)

Sol.
$$\sin \theta \approx \theta \approx \frac{2\lambda}{b}$$

= $\frac{2 \times 600 \times 10^{-9}}{4 \times 10^{-4}} = 3 \times 10^{-3} \text{ rad}$

Total divergence = $(3 + 3) \times 10^{-3} = 6 \times 10^{-3}$ rad

60. In an alpha particle scattering experiment distance of closest approach for the α particle is 4.5×10^{-14} m. If target nucleus has atomic number 80, then maximum velocity of α -particle is _____× 10^5 m/s approximately.

$$(\frac{1}{4\pi \epsilon_0} = 9 \times 10^9 \text{ SI unit, mass of } \alpha \text{ particle} = 6.72 \times 10^{-27} \text{ kg})$$

Ans. (156)

Sol.
$$v = \sqrt{\frac{4KZe^2}{mr_{min}}}$$

$$= \sqrt{\frac{4 \times 9 \times 10^9 \times 80}{6.72 \times 10^{-27} \times 4.5 \times 10^{-14}}} \times 1.6 \times 10^{-19}$$

$$= 9.759 \times 10^{25} \times 1.6 \times 10^{-19}$$

$$= 156 \times 10^5 \text{ m/s}$$

(Held On Monday 08th April, 2024)

TIME: 9:00 AM to 12:00 NOON

CHEMISTRY

SECTION-A

61. Given below are two statements:

Statement I :
$$O_2N$$
 O_2N O_2N

IUPAC name of Compound A is 4-chloro-1, 3-dinitrobenzene:

Statement II:
$$CH_3$$
 C_2H_5
Compound-B

IUPAC name of Compound B is 4-ethyl-2-methylaniline.

In the light of the above statements, choose the **most appropriate** answer from the options given below:

- (1) Both Statement I and Statement II are correct
- (2) Statement I is incorrect but Statement II is correct
- (3) Statement I is correct but Statement II is incorrect
- (4) Both Statement I and Statement II are incorrect

Ans. (2)

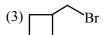
IUPAC name

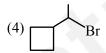
- ⇒ 1-chloro-2, 4-dinitrobenzene
- ⇒ statement-I is incorrect

- \Rightarrow 4-ethyl-2-methylaniline
- ⇒ statement-II is correct

TEST PAPER WITH SOLUTION

62. Which among the following compounds will undergo fastest $S_N 2$ reaction.





Ans. (3)

Sol. 1 Br

3 B

fastest SN² reaction give Br

Rate of SN² is Me – x > 1° – x > 2° – x > 3° – x

63. Combustion of glucose ($C_6H_{12}O_6$) produces CO_2 and water. The amount of oxygen (in g) required for the complete combustion of 900 g of glucose is: [Molar mass of glucose in g mol⁻¹ = 180]

- (1) 480
- (2)960
- (3)800
- (4) 32

Ans. (2)

Sol. $C_6H_{12}O_{6(s)} + 6O_{2(g)} \longrightarrow 6CO_{2(g)} + 6H_2O_{(\ell)}$

 $\frac{900}{180}$

= 5 mol 30 mol

Mass of O_2 required = $30 \times 32 = 960$ gm

64. Identify the major products A and B respectively in the following set of reactions.

$$B \stackrel{CH_3COCl}{\longrightarrow} OH \stackrel{CH_3}{\longrightarrow} A$$

$$(1) A = OH_3 \text{ and } B = OH_3 \text{ OCOCH}_3$$

$$(2) A = OH_3 \text{ OH}_3 \text{ OH}_3$$

$$(3) A = OH_2 \text{ OH}_3$$

$$(4) A = OH_3 \text{ OH}_3$$

$$(5) A = OH_3 \text{ OH}_3$$

$$(6) A = OH_3 \text{ OH}_3$$

$$(7) A = OH_3 \text{ OH}_3$$

$$(8) A = OH_3 \text{ OH}_3$$

$$(9) A = OH_3 \text{ OH}_3$$

$$(1) A = OH_3 \text{ OH}_3$$

$$(2) A = OH_3 \text{ OH}_3$$

$$(3) A = OH_3 \text{ OH}_3$$

Sol.
$$CH_3$$
 CH_3COC1 $OCOCH_3$ CH_3COC1 OH OH CH_3 CH_3COC1 OH OH CH_3 CH

65. Given below are two statements : One is labelled as

Assertion A and the other is labelled as Reason R:

Assertion A: The stability order of +1 oxidation state of Ga, In and Tl is Ga < In < Tl.

Reason R: The inert pair effect stabilizes the lower oxidation state down the group.

In the light of the above statements, choose the *correct* answer from the options given below:

- (1) Both **A** and **R** are true and **R** is the correct explanation of **A**.
- (2) **A** is true but **R** is false.
- (3) Both **A** and **R** are true but **R** is NOT the correct explanation of **A**.
- (4) **A** is false but **R** is true.

Ans. (1)

- **Sol.** The relative stability of +1 oxidation state progressively increases for heavier elements due to inert pair effect.
 - \therefore Stability of $A\ell^{+1} \le Ga^{+1} \le In^{+1} \le T\ell^{+1}$
- 66. Match List I with List-II

	List-I		List-II		
(Na	(Name of the test)		(Reaction sequence involved)		
			[M is metal]		
A	Borax bead	I.	$MCO_3 \rightarrow MO$		
	test		$\xrightarrow[+\Delta]{\text{Co(NO}_3)} \text{CoO. MO}$		
B.	Charcoal cavity test	II.	$MCO_3 \rightarrow MCl_2 \rightarrow M^{2+}$		
C.	Cobalt nitrate test	III	$MSO_4 \xrightarrow{Na_2B_4O_7} \Delta$ $M(BO_2)_2 \to MBO_2 \to M$		
D.	Flame test	IV	$MSO_4 \xrightarrow{Na_2CO_3} MCO_3 \rightarrow$		
ŀ			$MO \rightarrow M$		

Choose the **correct** answer from the option below:

- (1) A-III, B-I, C-IV, D-II
- (2) A-III, B-II, C-IV, D-I
- (3) A-III, B-I, C-II, D-IV
- (4) A-III, B-IV, C-I, D-II

Ans. (4)

Sol. Cobalt nitrate test

$$MCO_3 \rightarrow MO \xrightarrow{Co(NO_3)} CoO. MO$$

Flame test

$$MCO_3 \rightarrow MCl_2 \rightarrow M^{2+}$$

Borax Bead test

$$MSO_4 \xrightarrow{Na_2B_4O_7} M(BO_2)_2 \rightarrow MBO_2 \rightarrow M$$

Charcoal cavity test

$$MSO_4 \xrightarrow{Na_2CO_3} MCO_3 \rightarrow MO \rightarrow M$$

67. Match List I and with List II

List-I (Molecule)		List-II(Shape)		
A	NH ₃	I.	Square pyramid	
B.	BrF ₅	II.	Tetrahedral	
C.	PCl ₅	III	Trigonal pyramidal	
D.	CH ₄	IV	Trigonal bipyramidal	

Choose the **correct** answer from the option below:

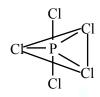
- (1) A-IV, B-III, C-I, D-II
- (2) A-II, B-IV, C-I, D-III
- (3) A-III, B-I, C-IV, D-II
- (4) A-III, B-IV, C-I, D-II

Ans. (3)

Sol.

Trigonal pyramidal

Square pyramidal



Trigonal bipyramidal

Tetrahedral

68. For the given hypothetical reactions, the equilibrium constants are as follows:

$$X \rightleftharpoons Y; K_1 = 1.0$$

$$Y \rightleftharpoons Z; K_2 = 2.0$$

$$Z \rightleftharpoons W ; K_3 = 4.0$$

The equilibrium constant for the reaction

 $X \Longrightarrow W$ is

- (1) 6.0
- (2) 12.0
- (3) 8.0
- (4) 7.0

Ans. (3)

Sol. $\rightleftharpoons Y$

$$k_1 = 1$$

 \rightleftharpoons Z

 $k_2 = 2$

 $Z \rightleftharpoons \alpha$

 $k_3 = 4$

 $X \rightleftharpoons \omega$

 $k_1 \cdot k_2 \cdot k_3$

 $k = 1 \times 2 \times 4$

k = 8

69. Thiosulphate reacts differently with iodine and bromine in the reaction given below :

$$2S_2O_3^{2-} + I_2 \rightarrow S_4O_6^{2-} + 2I^-$$

$$S_2O_3^{2-} + 5Br_2 + 5H_2O \rightarrow 2SO_4^{2-} + 4Br^- + 10H^+$$

Which of the following statement justifies the above dual behaviour of thiosulphate?

- (1) Bromine undergoes oxidation and iodine undergoes reduction by iodine in these reactions
- (2) Thiosulphate undergoes oxidation by bromine and reduction by iodine in these reaction
- (3) Bromine is a stronger oxidant than iodine
- (4) Bromine is a weaker oxidant than iodine

Ans. (3)

Sol. In the reaction of $S_2O_3^{2-}$ with I_2 , oxidation state of sulphur changes to +2 to +2.5

In the reaction of $S_2O_3^{2-}$ with Br_2 , oxidation state of sulphur changes from +2 to +6.

- \therefore Both I_2 and Br_2 are oxidant (oxidising agent) and Br_2 is stronger oxidant than I_2 .
- 70. An octahedral complex with the formula $CoCl_3nNH_3$ upon reaction with excess of $AgNO_3$ solution given 2 moles of AgCl. Consider the oxidation state of Co in the complex is 'x'. The value of "x + n" is
 - (1)3

(2) 6

- (3) 8
- (4) 5

Ans. (3)

Sol. $\left[\overset{+3}{\text{Co}} (\text{NH}_3)_5 \text{Cl} \right] \text{Cl}_2 + \text{excess AgNO}_3 \longrightarrow 2 \text{AgCl}$

(2 moles)

$$x + 0 - 1 - 2 = 0$$

$$x = +3$$

$$n = 5$$

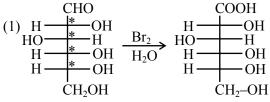
$$\therefore x + n = 8$$

The **incorrect** statement regarding the given structure is

- (1) Can be oxidized to a dicarboxylic acid with Br₂ water
- (2) despite the presence of CHO does not give Schiff's test
- (3) has 4-asymmetric carbon atom
- (4) will coexist in equilibrium with 2 other cyclic structure

Ans. (1)

Sol.



statement 1 is incorrect (monocarboxylic acid)

(2) correct

(3) c.c. is 4 (correct)

72. In the given compound, the number of 2° carbon atom/s is

- (1) Three
- (2) One
- (3) Two
- (4) Four

Ans. (2)

only one 2° carbon is present in this compound.

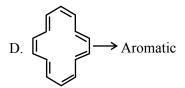
73. Which of the following are aromatic?

- (1) B and D only
- (2) A and C only
- (3) A and B only
- (4) C and D only

Ans. (1)

Sol. A. \longrightarrow Non aromatic

$$B.$$
 \longrightarrow Aromatic



74. Among the following halogens

F₂, Cl₂, Br₂ and I₂

Which can undergo disproportionation reaction?

- (1) Only I_2
- (2) Cl₂, Br₂ and I₂
- (3) F₂, Cl₂ and Br₂
- (4) F_2 and Cl_2

Ans. (2)

Sol. F₂ do not disproportionate because fluorine do not exist in positive oxidation state however Cl₂, Br₂ & I₂ undergoes disproportionation.

75. Given below are two statements:

Statement I : $N(CH_3)_3$ and $P(CH_3)_3$ can act as ligands to form transition metal complexes.

Statement II: As N and P are from same group, the nature of bonding of N(CH₃)₃ and P(CH₃)₃ is always same with transition metals.

In the light of the above statements, choose the **most appropriate** answer from the options given below:

- (1) Statement I is incorrect but Statement II is correct
- (2) Both Statement I and Statement II are correct
- (3) Statement I is correct but Statement II is incorrect
- (4) Both Statement I and Statement II are incorrect

Ans. (3)

Sol. $N(CH_3)_3$ and $P(CH_3)_3$ both are Lewis base and acts as ligand, However, $P(CH_3)_3$ has a π -acceptor character.

76. Match List I with List II

Li	st-I (Elements)	List-II(Properties in		
		their respective groups)		
A	Cl,S	I. Elements with highes		
			electronegativity	
B.	Ge, As	II.	Elements with largest	
			atomic size	
C.	Fr, Ra	III	Elements which show	
			properties of both	
			metals and non metal	
D.	F, O	IV	Elements with highest	
			negative electron gain	
			enthalpy	

Choose the **correct** answer from the options given below:

- (1) A-II, B-III, C-IV, D-I
- (2) A-III, B-II, C-I, D-IV
- (3) A-IV, B-III, C-II, D-I
- (4) A-II, B-I, C-IV, D-III

Ans. (3)

Sol. Elements with highest electronegativity \rightarrow F, O Elements with largest atomic size \rightarrow Fr, Ra

Elements which shows properties of both metal and non-metals i.e. metalloids \rightarrow Ge, As

Elements with highest negative electron gain enthalpy \rightarrow Cl, S

77. Iron (III) catalyses the reaction between iodide and persulphate ions, in which

A. Fe³⁺ oxidises the iodide ion

B. Fe³⁺ oxidises the persulphate ion

C. Fe²⁺ reduces the iodide ion

D. Fe²⁺ reduces the persulphate ion

Choose the **most appropriate** answer from the options given below:

(1) B and C only

(2) B only

(3) A only

(4) A and D only

Ans. (4)

Sol.
$$2Fe^{3+} + 2I^{-} \longrightarrow 2Fe^{2+} + I_2$$

$$2Fe^{2+} + S_2O_8^{2-} \longrightarrow 2Fe^{3+} + 2SO_4^{2-}$$

 Fe^{+3} oxidises I^- to I_2 and convert itself into Fe^{+2} . This Fe^{+2} reduces $S_2O_8^{2-}$ to SO_4^{2-} and converts itself into Fe^{+3} .

78. Match List I with List II

List-I (Compound)		List-II	
		(Colour)	
A	$Fe_4[Fe(CN)_6]_3.xH_2O$	I.	Violet
	[Fe(CN) ₅ NOS] ⁴⁻	II.	Blood Red
C.	[Fe(SCN)] ²⁺	III.	Prussian Blue
D.	(NH ₄) ₃ PO ₄ .12MoO ₃	IV.	Yellow

Choose the **correct** answer from the options given below:

- (1) A-III, B-I, C-II, D-IV
- (2) A-IV, B-I, C-II, D-III
- (3) A-II, B-III, C-IV, D-I
- (4) A-I, B-II, C-III, D-IV

Ans. (1)

Sol. $Fe_4[Fe(CN)_6]_3$.xH₂O \rightarrow Prussian Blue

 $[Fe(CN)_5NOS]^{4-} \rightarrow Violet$

 $[Fe(SCN)]^{2+} \rightarrow Blood Red$

 $(NH_4)_3PO_4.12MoO_3 \rightarrow Yellow$

79. Number of complexes with even number of electrons in t_{2g} orbitals is -

 $[Fe(H_2O)_6]^{2+}, [Co(H_2O)_6]^{2+}, [Co(H_2O)_6]^{3+},$

 $[Cu(H_2O)_6]^{2+}, [Cr(H_2O)_6]^{2+}$

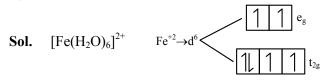
(1) 1

(2) 3

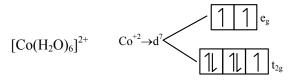
(3) 2

(4) 5

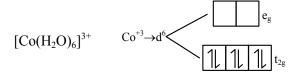
Ans. (2)



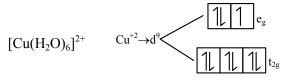
Electron in $t_{2g} = 4(even)$



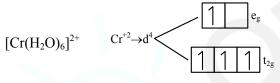
Electron in $t_{2g} = 5(odd)$



Electron in $t_{2g} = 6$ (even)



Electron in $t_{2g} = 6(even)$



Electron in $t_{2g} = 3(odd)$

80. Identify the product (P) in the following reaction:

$$\begin{array}{c}
\begin{array}{c}
\text{COOH} & \text{i) } \text{Br}_2/\text{Red P} \\
\hline
\text{ii) } \text{H}_2\text{O}
\end{array}$$

$$(3)$$
 CHO

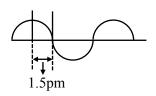
Ans. (1)

Sol. HVZ Reaction

$$\underbrace{\text{COOH}}_{\text{ii) } \text{H}_2\text{O}} \xrightarrow{\text{i) } \text{Br}_2/\text{Red P}} \underbrace{\text{COOH}}_{\text{Br}}$$

SECTION-B

A hypothetical electromagnetic wave is show 81. below.



The frequency of the wave is $x \times 10^{19}$ Hz.

$$x =$$
 (nearest integer)

Ans. (5)

Sol.
$$\lambda = 1.5 \times 4 \text{ pm}$$

= $6 \times 10^{-12} \text{ meter}$
 $\lambda v = C$

$$6 \times 10^{-12} \times v = 3 \times 10^{8}$$

 $v = 5 \times 10^{19} \text{ Hz}$

Consider the figure provided.

1 mol of an ideal gas is kept in a cylinder, fitted with a piston, at the position A, at 18°C. If the piston is moved to position B, keeping the temperature unchanged, then 'x' L atm work is done in this reversible process.

x =_____ L atm. (nearest integer)

[Given : Absolute temperature = $^{\circ}$ C + 273.15, $R = 0.08206 L atm mol^{-1} K^{-1}$

Ans. (55)

Sol.
$$\omega = -nRT \ln \left(\frac{V_2}{V_1} \right)$$

= $-1 \times .08206 \times 291.15 \ln \left(\frac{100}{10} \right)$
= -55.0128

Work done by system ≈ 55 atm lit.

83. Number of amine compounds from the following giving solids which are soluble in NaOH upon reaction with Hinsberg's reagent is

$$\begin{array}{c|c} & O & O \\ & & & \\ & NH_2 & \\ & NH_2 & \\ & NH_2 & \\ & & \\$$

Ans. (5)

Sol. Primary amine give an ionic solid upon reaction with Hinsberg reagent which is soluble in NaOH.

$$\begin{array}{c|c} NH_2 & NH \\ OCH_3 & H \\ \hline NH_2 & NH_2 & NH_2 \end{array}$$

84. The number of optical isomers in following compound is:

Ans. (32)

Total chiral centre = 5

No. of optical isomers = $2^5 = 32$.

85. The 'spin only' magnetic moment value of MO_4^{2-} is _____ BM. (Where M is a metal having least metallic radii. among Sc, Ti, V, Cr, Mn and Zn). (Given atomic number : Sc = 21, Ti = 22, V = 23, Cr = 24, Mn = 25 and Zn = 30)

Ans. (0)

Sol. Metal having least metallic radii among Sc, Ti, V, Cr, Mn & Zn is Cr.

Spin only magnetic moment of CrO₄²⁻.

Here Cr⁺⁶ is in d⁰ configuration (diamagnetic).

Number of molecules from the following which are exceptions to octet rule is _____.

CO₂, NO₂, H₂SO₄, BF₃, CH₄, SiF₄, ClO₂, PCl₅, BeF₂, C₂H₆, CHCl₃, CBr₄

Ans. (6)

exception to octet rule
$$\begin{array}{c} H \\ complete \\ octet \\ \end{array}$$
 $\begin{array}{c} Cl \\ Cl \\ Cl \\ \end{array}$ $\begin{array}{c} Cl \\ F-Be-F \\ \end{array}$ exception to octet rule $\begin{array}{c} Cl \\ Cl \\ \end{array}$ $\begin{array}{c} Cl \\ Cl \\ \end{array}$ $\begin{array}{c} Cl \\ \end{array}$ $\begin{array}{c$

87. If 279 g of aniline is reacted with one equivalent of benzenediazonium chloride, the mximum amount of aniline yellow formed will be _____ g. (nearest integer)

(consider complete conversion)

Ans. (591)

moles formed =3 m. t = 197amount formed =197 × 3 = 591 gm

88. Consider the following reaction

$$A + B \rightarrow C$$

The time taken for A to become 1/4th of its initial concentration is twice the time taken to become 1/2 of the same. Also, when the change of concentration of B is plotted against time, the resulting graph gives a straight line with a negative slope and a positive intercept on the concentration axis.

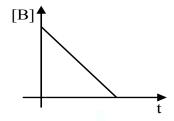
The overall order of the reaction is _____.

Ans. (1)

Sol. For 1st order reaction

$$75\%$$
 life = $2 \times 50\%$ life

So order with respect to A will be first order.



So order with respect to B will be zero.

Overall order of reaction = 1 + 0 = 1

89. Major product B of the following reaction has π -bond.

$$CH_2CH_3$$
 $KMnO_4-KOH$
 A
 A
 (A)
 HNO_3/H_2SO_4
 (B)

Ans. (5)

Sol. Major product B is \rightarrow

$$(A) \xrightarrow{CH_2CH_3} (A) \xrightarrow{C-OK} (B) \xrightarrow{C-OH} (B)$$

Total number of π bonds in B are 5

90. A solution containing 10g of an electrolyte AB₂ in 100g of water boils at 100.52°C. The degree of ionization of the electrolyte (α) is ____ × 10⁻¹. (nearest integer)

[Given : Molar mass of $AB_2 = 200 \text{g mol}^{-1}$. K_b (molal boiling point elevation const. of water) = 0.52 K kg mol⁻¹, boiling point of water = 100°C; AB_2 ionises as $AB_2 \rightarrow A^{2+} + 2B^-$]

Ans. (5)

Sol.
$$AB_2 \rightarrow A^{+2} + 2B^{\odot}$$

$$i = 1 + (3 - 1) \alpha$$

$$i = 1 + 2\alpha$$

$$\Delta T_b = k_b \text{ im}$$

$$0.52 = 0.52 (1 + 2\alpha) \frac{\frac{10}{200}}{\frac{100}{1000}}$$

$$1 = (1 + 2\alpha) \ \frac{10}{20}$$

$$2 = 1 + 2\alpha$$

$$\alpha = 0.5$$

Ans.
$$\alpha = 5 \times 10^{-1}$$